hdu-3790-最短路径问题(Dijkstra)

时间:2022-02-14 09:41:15

题目链接

 

 1 /*
 2     Name:hdu-3790-最短路径问题
 3     Copyright:
 4     Author:
 5     Date: 2018/4/16 19:16:25
 6     Description:
 7     
 8     dijkstra 模板题
 9 */
10 #include <cstring>
11 #include <algorithm>
12 #include <iostream>
13 using namespace std;
14 const int MaxN = 1010;
15 const int INF = 0x3f3f3f3f;
16 int dis[MaxN], g[MaxN][MaxN],N, src, costEdge[MaxN][MaxN], cost[MaxN];
17 bool v[MaxN];
18 
19 void dijkstra() {
20     for (int i=1; i<=N; i++){
21          dis[i] = INF;
22          cost[i] = INF;
23     }
24     dis[src] = 0;
25     cost[src] = 0;
26     memset(v, 0, sizeof(v));
27     for (int i=1; i<=N; i++) {
28         int mark = -1, mindis = INF;
29         for (int j=1; j<=N; ++j) {
30             if (!v[j] && dis[j]<mindis) {
31                 mindis = dis[j];
32                 mark = j;
33             }
34         }
35         v[mark] = 1;
36         for (int j=1; j<=N; ++j) {
37             if (!v[j]) {
38                  if (dis[mark] + g[mark][j] < dis[j]) {
39                     dis[j] = dis[mark] + g[mark][j];
40                      cost[j] = cost[mark] + costEdge[mark][j];
41                  } else if(dis[mark] + g[mark][j] == dis[j] && cost[j] > cost[mark] + costEdge[mark][j]) {
42                      cost[j] = cost[mark] + costEdge[mark][j];
43                  }
44             }
45         }
46     }
47 }
48 int final[MaxN];
49 int main()
50 {
51 //    freopen("in.txt", "r", stdin);
52     int m;
53     while (~scanf("%d %d", &N, &m) && (N || m)) {
54         memset(g, 0x3f, sizeof(g));
55         memset(dis, 0, sizeof(dis));
56         memset(cost, 0, sizeof(cost));
57         memset(costEdge, 0x3f, sizeof(costEdge));
58 
59         for (int i=0; i<m; i++) {
60             int u, v, w, c;
61             scanf("%d %d %d %d", &u, &v, &w, &c);
62             if(w < g[u][v]) { //必须判断 重边否则WA 
63                 g[u][v] = g[v][u] = w;
64                 costEdge[u][v] = costEdge[v][u] = c;
65             }
66         }
67         int final = 0;
68         scanf("%d %d", &src, &final);
69         dijkstra();
70         printf("%d %d\n", dis[final], cost[final]);
71     }
72     return 0;
73 }