BZOJ_2118_墨墨的等式_最短路
Description
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N、{an}、以及B的取值范围,求出有多少B可以使等式存在非负整数解。
Input
输入的第一行包含3个正整数,分别表示N、BMin、BMax分别表示数列的长度、B的下界、B的上界。输入的第二行包含N个整数,即数列{an}的值。
Output
输出一个整数,表示有多少b可以使等式存在非负整数解。
Sample Input
2 5 10
3 5
3 5
Sample Output
5
HINT
对于100%的数据,N≤12,0≤ai≤5*10^5,1≤BMin≤BMax≤10^12。
首先将L,R差分,求[1,x]有多少符合条件的数。
但是x太大,考虑将x%min{ai},这样我们求的x就变成500000以内的了。
设dis[i]表示长度为b且b%mina=i且最小的b。
也就是我们对于每个模之后的数求一个最小能表示的,然后就能求出有多少个可以表示的了。
代码:
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <ext/pb_ds/priority_queue.hpp>
using namespace std;
using namespace __gnu_pbds;
#define N 500050
typedef long long ll;
ll dis[N],L,R;
int n,minl,a[20],vis[N];
__gnu_pbds::priority_queue<pair<ll,int> >q;
ll solve(ll x) {
ll re=0;
int i;
for(i=0;i<minl;i++) {
if(dis[i]<=x) {
re+=(x-dis[i])/minl+1;
}
}
return re;
}
int main() {
scanf("%d%lld%lld",&n,&L,&R);
int i;
minl=1<<30;
for(i=1;i<=n;i++) {
scanf("%d",&a[i]);
minl=min(minl,a[i]);
}
memset(dis,0x3f,sizeof(dis));
dis[0]=0; q.push(make_pair(0,0));
while(!q.empty()) {
int x=q.top().second; q.pop();
if(vis[x]) continue;
vis[x]=1;
ll v=dis[x];
for(i=1;i<=n;i++) {
if(dis[(v+a[i])%minl]>v+a[i]) {
dis[(v+a[i])%minl]=v+a[i];
q.push(make_pair(-dis[(v+a[i])%minl],(v+a[i])%minl));
}
}
}
printf("%lld\n",solve(R)-solve(L-1));
}