AVL树(平衡二叉树)

时间:2024-05-26 22:35:08

定义及性质

  AVL树:AVL树是一颗自平衡的二叉搜索树.

  AVL树具有以下性质:

    根的左右子树的高度只差的绝对值不能超过1

    根的左右子树都是 平衡二叉树(AVL树)

百度百科:

  平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法)

    且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

    平衡二叉树的常用实现方法有红黑树AVL替罪羊树Treap伸展树等。

       最小二叉平衡树的节点总数的公式如下 F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列

       可以参考Fibonacci(斐波那契)数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。

AVL树--插入操作

AVL树(平衡二叉树)

AVL插入--旋转

AVL树(平衡二叉树)

AVL树(平衡二叉树)

代码实现

from bst import BST, BiTreeNode

class AVLNode(BiTreeNode):
def __init__(self, data):
BiTreeNode.__init__(self, data)
self.bf = 0 class AVLTree(BST):
def __init__(self, li=None):
BST.__init__(self, li) def rotate_left(self, p, c):
s2 = c.lchild
p.rchild = s2
if s2:
s2.parent = p c.lchild = p
p.parent = c # 更新bf
if c.bf == 0:
p.bf = 1
c.bf = -1
else:
p.bf = 0
c.bf = 0
return c def rotate_right(self, p, c):
s2 = c.rchild
p.lchild = s2
if s2:
s2.parent = p c.rchild = p
p.parent = c # update bf
if c.bf == 0:
p.bf = -1
c.bf = 1
else:
p.bf = 0
c.bf = 0
return c def rotate_right_left(self, p, c):
g = c.lchild s3 = g.rchild
c.lchild = s3
if s3:
s3.parent = c
g.rchild = c
c.parent = g s2 = g.lchild
p.rchild = s2
if s2:
s2.parent = p
g.lchild = p
p.parent = g # 更新 bf
if g.bf > 0: # g.bf == 1
p.bf = -1
c.bf = 0
elif g.bf == 0:
p.bf = 0
c.bf = 0
else: # g.bf == -1
p.bf = 0
c.bf = 1 g.bf = 0
return g def rotate_left_right(self, p, c):
g = c.rchild s3 = g.lchild
c.rchild = s3
if s3:
s3.parent = c
g.lchild = c
c.parent = g s2 = g.rchild
p.lchild = s2
if s2:
s2.parent = p
g.rchild = p
p.parent = g # 更新 bf
if g.bf < 0: # g.bf == 1
p.bf = 1
c.bf = 0
elif g.bf == 0:
p.bf = 0
c.bf = 0
else: # g.bf == -1
p.bf = 0
c.bf = -1 g.bf = 0
return g def insert_no_rec(self, val):
p = self.root
if not p:
self.root = AVLNode(val)
return
while True:
if val < p.data:
if p.lchild:
p = p.lchild
else:
p.lchild = AVLNode(val)
p.lchild.parent = p
node = p.lchild
break
elif val > p.data:
if p.rchild:
p = p.rchild
else:
p.rchild = AVLNode(val)
p.rchild.parent = p
node = p.rchild
break
else:
return # 更新bf
while node.parent:
if node.parent.lchild == node: # 左孩子
if node.parent.bf < 0: # node.parent.bf=-2 左边深
g = node.parent.parent
if node.bf > 0:
n = self.rotate_left_right(node.parent, node)
else:
n = self.rotate_right(node.parent, node)
elif node.parent.bf > 0:
node.parent.bf = 0
break
else:
node.parent.bf = -1
node = node.parent
continue else: # 右孩子
if node.parent.bf > 0: # node.parent.bf=2 右边深
g = node.parent.parent
if node.bf < 0:
n = self.rotate_right_left(node.parent, node)
else:
n = self.rotate_left(node.parent, node)
elif node.parent.bf < 0:
node.parent.bf = 0
break
else:
node.parent.bf = 1
node = node.parent
continue # 旋转结束后
# 连接旋转后的子树的根和原来的树 n.parent = g
if g:
if node.parent == g.lchild:
g.lchild = n
else:
g.rchild = n
break
else:
self.root = n
break tree = AVLTree([7,3,5,4,2,8,6,9,1])
tree.pre_order(tree.root)
print("")
tree.in_order(tree.root)