转自:http://guoziya2000.blog.163.com/blog/static/577760872010102342857/
求两个数的最大公约数的方法
(1)用短除法求两个数的最大公约数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来,在除的过程中,有时也可以用两个数的公约数去除。
(2)求两个数的最大公约数的两种特殊情况:①如果这两个数存在着倍数关系(即较大数是较小数的倍数),那么,较小数就是这两个数的最大公约数;②如果两个数是互质数,那么它们的最大公约数就是1。
两个数求最大公约数,可以用辗转相除法。始终用较大数除以较小数,然后用余数代替较大数。整除时的除数就是最大公约数。举例:
222 407求最大公约数:
222 407(407除以222余数185)
222 185(222除以185余数37)
37 185(185除以37余数0)
所以最大公约数为37
39 24求最大公约数
39 24(39/24,余数15)
15 24(24/15,余数9)
15 9(15/9,余数6)
6 9(9/6,余数3)
6 3(6/3,余数0)
所以最大公约数为3