题外话,文章中有大量的标识1 标识2,大家可以用ctrl+f来查找。
构成缓存的类
主要就是以下两个:
com.opensymphony.xwork2.inject.util.ReferenceCache<K, V> com.opensymphony.xwork2.inject.util.ReferenceMap<K, V>
前者继承自后者。
我们先看看ReferenceMap
public class ReferenceMap<K, V> implements Map<K, V>, Serializable { private static final long serialVersionUID = 0; transient ConcurrentMap<Object, Object> delegate; final ReferenceType keyReferenceType; final ReferenceType valueReferenceType; }
三个实例变量中,ReferenceType牵扯到什么弱引用,软引用咱们暂时不管。
delegate就是存放缓存数据的地方。
再看ReferenceCache
public abstract class ReferenceCache<K, V> extends ReferenceMap<K, V> { private static final long serialVersionUID = 0; transient ConcurrentMap<Object, Future<V>> futures = new ConcurrentHashMap<Object, Future<V>>(); transient ThreadLocal<Future<V>> localFuture = new ThreadLocal<Future<V>>(); }
关于ThreadLocal的知识,大家可以参阅拙作
深入理解ThreadLocal
缓存的操作接口
OK,现在我们开始看ReferenceMap的源码,就从get方法开始。
public V get(final Object key) { ensureNotNull(key); return internalGet((K) key); } ensureNotNull看名字就知道是干什么的了。 V internalGet(K key) { Object valueReference = delegate.get(makeKeyReferenceAware(key));//标识1 return valueReference == null ? null : (V) dereferenceValue(valueReference); }
关于makeKeyReferenceAware是干什么的,我只能说和强引用(STRONG)、弱引用(WEAK)、软引用(SOFT),最后一种幽灵引用(PHANTON)相关,它们有什么区别,我不清楚。不过我觉得这里不是重点。
标识1处的代码,大家看成如下就OK
delegate.get(key);
第一次要获得一个key,delegate必然没有,因而internalGet返回null,get也返回null。
好,接下来我们看看ReferenceCache的get方法。
@Override public V get(final Object key) { V value = super.get(key); //标识2 return (value == null) ? internalCreate((K) key) //标识9 : value; }
标识2处最终调用的是ReferenceMap的internalGet方法,第一回肯定为null,我们看internalCreate方法。
V internalCreate(K key) { try { FutureTask<V> futureTask = new FutureTask<V>( new CallableCreate(key)); // use a reference so we get the same equality semantics. Object keyReference = referenceKey(key); //referenceKey方法大家就当没看见 Future<V> future = futures.putIfAbsent(keyReference, futureTask); //标识4 if (future == null) { // winning thread. try { //localFuture在这里到底扮演什么角色 //到现在我也没有看明白 if (localFuture.get() != null) { throw new IllegalStateException( "Nested creations within the same cache are not allowed."); } localFuture.set(futureTask); futureTask.run(); //标识3 V value = futureTask.get(); //标识5 putStrategy().execute(this, //标识7 keyReference, referenceValue(keyReference, value)); return value; } finally { localFuture.remove(); futures.remove(keyReference); } } else { // wait for winning thread. return future.get(); }//省略catch } }
其中CallableCreate最主要的就是那个call方法。在上面代码标识3处调用call方法。
另外多说一句废话
对于线程来说,直接调用run方法就没有线程的效果,就相当于函数调用,而对futureTask而言,调用run方法就是启动线程并调用call方法。
标识4处调用了ConcurrentHashMap的putIfAbsent。
对这个方法来说它的作用就相当于
if (!map.containsKey(key)) return map.put(key, value); else return map.get(key);
看一个小例子
public class ConcurrentHashMapTest { public static void main(String[] args) { ConcurrentHashMap<People, String> chm=new ConcurrentHashMap<People, String>(); People p=new People(); System.out.println(chm.putIfAbsent(p, "1")); System.out.println(chm.putIfAbsent(p, "2")); System.out.println(chm.get(p)); } } class People{ String name; String age; }
运行结果为
null
1
1
因而标识4处的future肯定为null。
到标识5处,我们就得看看call方法了。
class CallableCreate implements Callable<V> { K key; public CallableCreate(K key) { this.key = key; } public V call() { // try one more time (a previous future could have come and gone.) V value = internalGet(key); //在父类的delegate里面找 if (value != null) { return value; } // create value. value = create(key); //标识6 if (value == null) { throw new NullPointerException( "create(K) returned null for: " + key); } return value; } }
internalGet被定义在ReferenceMap中。上文已经说过。就是在delegate里面找。
所以我们得去看看标识6里面的代码。
可是create本身是一个抽象方法。
其实现在子类里。
ok,到现在我们就得引入本文标题中的Injector了。
injectors是Struts2中的容器ContainerImpl中的实例变量。
final Map<Class<?>, List<Injector>> injectors = new ReferenceCache<Class<?>, List<Injector>>() { @Override protected List<Injector> create( Class<?> key ) { List<Injector> injectors = new ArrayList<Injector>(); addInjectors(key, injectors); return injectors; } };
OK creat里返回的是存在与这个key(其实就是一个类)上面的所有注入器。
至于addInjector的具体实现
大家可以看看拙作
struts容器的存储结构
ContainerImpl类里面的inject方法里的this.injectors.get(o.getClass()) 开始了调用缓存。 去看标识2
void inject( Object o, InternalContext context ) { List<Injector> injectors = this.injectors.get(o.getClass()); for ( Injector injector : injectors ) { injector.inject(context, o); } }
下面就是标识7了。
putStrategy().execute(this,keyReference, referenceValue(keyReference, value));
缓存中的策略模式
protected interface Strategy { public Object execute(ReferenceMap map, Object keyReference, Object valueReference); } protected Strategy putStrategy() { return PutStrategy.PUT; //直接放 } protected Strategy putIfAbsentStrategy() { return PutStrategy.PUT_IF_ABSENT; //不存在时才放 } protected Strategy replaceStrategy() { return PutStrategy.REPLACE; //替换 } //枚举类 存放数据有三种方式 PUT PUT_IF_ABSENT REPLACE private enum PutStrategy implements Strategy { PUT { public Object execute(ReferenceMap map, Object keyReference, Object valueReference) { return map.delegate.put(keyReference, valueReference); } }, REPLACE { public Object execute(ReferenceMap map, Object keyReference, Object valueReference) { return map.delegate.replace(keyReference, valueReference); } }, PUT_IF_ABSENT { public Object execute(ReferenceMap map, Object keyReference, Object valueReference) { return map.delegate.putIfAbsent(keyReference, valueReference); } }; };
因而标识7处等于是调用
map.delegate.put(keyReference, valueReference);
map就是ReferenceMap。
再往下看,返回,一直到标识9处。
最后到ContainerImpl类里面的inject方法。我们获得了某个类的全部注册器。
第二次查找
OK刚才都是第一次直接插入,现在我们看看缓存的真正价值:第二次查找。
首先是 ContainerImpl类里面的inject方法里的this.injectors.get(o.getClass())
然后是标识2 接着就是internalGet。
查找缓存结束了。
其实还有一个问题:
internalCreate里面的
Future<V> future = futures.putIfAbsent(keyReference, futureTask);
future什么时候不等于null?
另外这个缓存里面,如果大家仔细去研读,能提出的问题还是很多很多的。
这篇文章,只能说是引大家入门而已。
感谢glt