【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2242
【题目大意】
给出T和K
对于K=1,计算 Y^Z Mod P 的值
对于K=2,计算满足 xy≡ Z ( mod P ) 的最小非负整数
对于K=3,计算满足 Y^x ≡ Z ( mod P) 的最小非负整数
【题解】
K=1情况快速幂即可
K=2情况用exgcd求解
K=3用BSGS求解
【代码】
#include <cstdio>
#include <cmath>
#include <map>
#include <algorithm>
#include <tr1/unordered_map>
using namespace std::tr1;
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
int phi(int n){
int t=1,i;
for(i=2;i*i<=n;i++)if(n%i==0)for(n/=i,t*=i-1;n%i==0;n/=i,t*=i);
if(n>1)t*=n-1;
return t;
}
int pow(ll a,int b,int m){ll t=1;for(;b;b>>=1,a=a*a%m)if(b&1)t=t*a%m;return t;}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int exgcd(int a,int b,int&x,int&y){
if(!b)return x=1,y=0,a;
int d=exgcd(b,a%b,x,y),t=x;
return x=y,y=t-a/b*y,d;
}
int bsgs(int a,int r,int m){
if(r>=m)return -1;
int i,g,x,c=0,at=int(2+sqrt(m));
for(i=0,x=1%m;i<50;i++,x=ll(x)*a%m)if(x==r)return i;
for(g=x=1;__gcd(int(ll(x)*a%m),m)!=g;c++)g=__gcd(x=ll(x)*a%m,m);
if(r%g)return -1;
if(x==r)return c;
unordered_map<int,int>u;
g=phi(m/g),u[x]=0;g=pow(a,g-at%g,m);
for(i=1;i<at;i++){
u.insert(P(x=ll(x)*a%m,i));
if(x==r)return c+i;
}
for(i=1;i<at;i++){
unordered_map<int,int>::iterator t=u.find(r=ll(r)*g%m);
if(t!=u.end())return c+i*at+t->second;
}return -1;
}
// 计算 Y^Z Mod P 的值
void solve1(ll y,int z,int p){printf("%d\n",pow(y,z,p));}
// 计算满足 xy≡ Z ( mod P ) 的最小非负整数
void solve2(int y,int z,int p){
p=-p;
int t=gcd(y,p);
if(z%t){puts("Orz, I cannot find x!");return;}
y/=t;z/=t;p/=t;
int a,b;exgcd(y,p,a,b);
a=(ll)a*z%p;
while(a<0)a+=p;
printf("%d\n",a);
}
// 计算满足 Y^x ≡ Z ( mod P) 的最小非负整数
void solve3(int y,int z,int p){
y%=p; z%=p;
int t=bsgs(y,z,p);
if(t==-1){puts("Orz, I cannot find x!");return;}
else printf("%d\n",t);
}
int main(){
int T,k,y,z,p;
while(~scanf("%d%d",&T,&k)){
while(T--){
scanf("%d%d%d",&y,&z,&p);
if(k==1)solve1(y,z,p);
if(k==2)solve2(y,z,p);
if(k==3)solve3(y,z,p);
}
}return 0;
}
BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)的更多相关文章
-
BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )
没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...
-
BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]
2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...
-
bzoj 2242 [SDOI2011]计算器 快速幂+扩展欧几里得+BSGS
1:快速幂 2:exgcd 3:exbsgs,题里说是素数,但我打的普通bsgs就wa,exbsgs就A了...... (map就是慢)..... #include<cstdio> # ...
-
【BZOJ2242】【SDoi2011】计算器 快速幂+EXGCD+BSGS
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...
-
bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...
-
BZOJ 2242 [SDOI2011]计算器 ——EXGCD/快速幂/BSGS
三合一的题目. exgcd不解释,快速幂不解释. BSGS采用了一种不用写EXGCD的方法,写起来感觉好了很多. 比较坑,没给BSGS的样例(LAJI) #include <map> #i ...
-
bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】
第一问快速幂板子 第二问把式子转化为\( xy\equiv Z(mod P)\rightarrow xy+bP=z \),然后扩展欧几里得 第三问BSGS板子 #include<iostream ...
-
BZOJ 2242 [SDOI2011]计算器 BSGS+高速幂+EXGCD
题意:id=2242">链接 方法: BSGS+高速幂+EXGCD 解析: BSGS- 题解同上.. 代码: #include <cmath> #include <c ...
-
BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)
同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...
随机推荐
-
UVa 10815 安迪的第一个字典
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
-
基于 backbone的弹窗插件
define(['backbone', 'jquery', 'text!creditCardTpl/page.html'], function (bacobone, jquery, dialog_tp ...
-
Quartz 2D--长方形和线条绘图
今天原本想模仿2048 游戏的. 但是在设计背景环境时,涉及到绘图的知识!于是就开始对绘图进行了一翻学习. 若想自己绘图必须 写自己的View(继承UICView):然后重写UIView 中的 dra ...
-
python 安装 ez_setup.py出现的问题及解决办法
试了网上好几个解决办法. 下面这个办法是最对我胃口的. ~~~~~~~~~~~~~~~~ 安装ez_setup.py时出现了这个问题: UnicodeDecodeError: 'ascii' cod ...
-
Spring Cloud官方文档中文版-Spring Cloud Config(上)
官方文档地址为:http://cloud.spring.io/spring-cloud-static/Dalston.SR2/#spring-cloud-feign 文中例子我做了一些测试在:http ...
-
cobbler自动化安装系统
笔者Q:972581034 交流群:605799367.有任何疑问可与笔者或加群交流 在很久很久以前,使用kickstart实现自动化安装的时候,我一直认为装系统是多么高大上的活,直到cobbler的 ...
-
python---面向对象高级进阶
静态方法,调用静态方法后,该方法将无法访问类变量和实例变量 class Dog(object): def __init__(self,name): self.name = name def eat(s ...
-
MySQL 水平拆分与垂直拆分详解
前言:说到优化mysql,总会有这么个回答:水平拆分,垂直拆分,那么我们就来说说什么是水平拆分,垂直拆分. 一.垂直拆分 说明:一个数据库由很多表的构成,每个表对应着不同的业务,垂直切分是指按照业务将 ...
-
对接携程供应商php加密解密类
php加密解密类 <?php class Aes{ private $key = '6b4d63211b4ba869'; private $iv = 'dbbf079b95004f65'; pu ...
-
C入门注意事项
C语言入门应该注意什么 进入IT行业,很多人一开始接触的都是C语言,C语言可以说是一门基础课程了,只要有了C语言的基础,那么以后不管是学什么语言都会比较容易上手.同时在学习其它语言时也可以 ...