题意:id=2242">链接
方法: BSGS+高速幂+EXGCD
解析:
BSGS…
题解同上..
代码:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MOD 140345
using namespace std;
typedef long long ll;
ll t,k,ans;
ll y,z,p;
int head[MOD+10],cnt;
struct node
{
ll from,to,val,next;
}edge[MOD+10];
void init()
{
memset(head,-1,sizeof(head));
cnt=1;
}
void edgeadd(ll from,ll to,ll val)
{
edge[cnt].from=from,edge[cnt].to=to,edge[cnt].val=val;
edge[cnt].next=head[from];
head[from]=cnt++;
}
ll quick_my(ll x,ll y)
{
ll ret=1;
while(y)
{
if(y&1)ret=(ret*x)%p;
x=(x*x)%p;
y>>=1;
}
return ret;
}
void exgcd(ll a,ll b,ll &x,ll &y,ll &gcd)
{
if(!b)
{
x=1,y=0,gcd=a;
return;
}
exgcd(b,a%b,y,x,gcd);
y=y-a/b*x;
}
void BSGS(ll A,ll B,ll C)
{
//A^x=B(mod C)
ll m=(int)ceil(sqrt(C));
ll k=1;
for(int i=0;i<m;i++)
{
int flag=1;
for(int j=head[k%MOD];j!=-1;j=edge[j].next)
{
if(edge[j].val==k){flag=0;continue;}
}
if(flag)edgeadd(k%MOD,i,k);
k=k*A%C;
}
ll X,Y,GCD;
exgcd(k,C,X,Y,GCD);
ll invk=(X%C+C)%C;
ll D=1,invD=1;
for(int i=0;i<=m;i++)
{
ll tmpB=B*invD%C;
for(int j=head[tmpB%MOD];j!=-1;j=edge[j].next)
{
if(edge[j].val==tmpB){ans=i*m+edge[j].to;return;}
}
D=D*k%C;
invD=invD*invk%C;
}
}
int main()
{
scanf("%lld%lld",&t,&k);
switch(k)
{
case 1:
while(t--)
{
scanf("%lld%lld%lld",&y,&z,&p);
printf("%lld\n",quick_my(y,z));
}
break;
case 2:
while(t--)
{
ll x,tmp,gcd;
scanf("%lld%lld%lld",&y,&z,&p);
exgcd(y,p,x,tmp,gcd);
if(z%gcd!=0)puts("Orz, I cannot find x!");
else
{
ll mod=p/gcd;
printf("%lld\n",((x*z/gcd)%mod+mod)%mod);
}
}
break;
case 3:
while(t--)
{
init();
scanf("%lld%lld%lld",&y,&z,&p);
ans=-1;
if(y%p==0&&z!=0){puts("Orz, I cannot find x!");continue;}
BSGS(y,z,p);
if(ans==-1)puts("Orz, I cannot find x!");
else printf("%lld\n",ans);
}
}
}