The Bottom of a Graph(tarjan + 缩点)

时间:2024-05-13 23:06:08
The Bottom of a Graph
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 9139   Accepted: 3794

Description

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1in G and we say that vn+1 is reachable from v1, writing (v1→vn+1)
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.The Bottom of a Graph(tarjan + 缩点)

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

Source

参考代码这里:http://blog.****.net/ehi11/article/details/7884851

缩点:(这个概念也是看了别人的理解)先求有向图的强连通分量 , 如果几个点同属于一个强连通 , 那就给它们标上相同的记号 , 这样这几个点的集合就形成了一个缩点。

题目大意:求出度为0的强连通分量

 #include<stdio.h>
#include<queue>
#include<string.h>
using namespace std;
const int M = ;
int n , m ;
int stack [M] , top = , index = ;
bool instack [M] ;
int dfn[M] , low[M] ;
int cnt = ;
vector <int> e[M] ;
int belong[M] ;
int out[M] ; void init (int n)
{
top = ;
cnt = ;
index = ;
memset (stack , - , sizeof(stack)) ;
memset (instack , , sizeof(instack)) ;
memset (dfn , - , sizeof(dfn)) ;
memset (low , - , sizeof(low)) ;
for (int i = ; i <= n ; i++)
e[i].clear () ;
memset (belong , - , sizeof(belong)) ;
memset (out , , sizeof(out)) ;
} void tarjan (int u)
{
int v ;
dfn[u] = low[u] = index++ ;
instack[u] = true ;
stack[++top] = u ;
for (int i = ; i < e[u].size () ; i++) {
v = e[u][i] ;
if (dfn[v] == -) {
tarjan (v) ;
low[u] = min (low[u] , low[v]) ;
}
else if (instack[v])
low[u] = min (low[u] , dfn[v]) ;
}
if (low[u] == dfn[u]) {
cnt++ ;
do {
v = stack[top--] ;
instack[v] = false ;
belong[v] = cnt ;
} while (u != v) ;
}
} int main ()
{
//freopen ("a.txt" , "r" , stdin) ;
int u , v ;
while (~ scanf ("%d" ,&n)) {
if (n == )
break ;
init (n) ;
scanf ("%d" , &m) ;
while (m--) {
scanf ("%d%d" , &u , &v) ;
e[u].push_back (v) ;
}
for (int i = ; i <= n ; i++) {
if (dfn[i] == -)
tarjan (i) ;
}
for (int i = ; i <= n ; i++) {
for (int j = ; j < e[i].size () ; j++) {
if (belong [i] != belong[e[i][j]])
out[belong[i]] ++;
}
}
int k = ;
for (int i = ; i <= n ; i++) {
if (out[belong[i]] == ) {
if (k++)
printf (" ") ;
printf ("%d" , i) ;
}
}
puts ("") ;
}
return ;
}