[模板][Luogu3387] 缩点 - Tarjan, 拓扑+DP

时间:2024-01-15 09:15:44

Description

给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。

允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。

Input&Output

Input

第一行,n,m

第二行,n个整数,依次代表点权

第三至m+2行,每行两个整数u,v,表示u->v有一条有向边

Output

共一行,最大的点权之和。

Sample

Input

2 2
1 1
1 2
2 1

Output

2

Solution

对于一个联通块,一定是经过其中所有点是最优的,所以我们可以缩点,新的点权是联通块内的点权和。

缩点后会得到一个DAG,此时一定是从入度为零的点走到出度为零的点最优,证明略。所以记录一下拓扑序,再做DP即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<stack>
#define maxe 100005
#define maxn 10005
using namespace std;
struct edge{
    int to,nxt;
}e[maxe];
struct cedge{
    int to,nxt;
}ce[maxe];
int edgenum,cedgenum,lnk[maxn],clnk[maxn],k[maxn],a,b,n,m;
int dfn[maxn],low[maxn],dgr[maxn],cnt,num,blk[maxn],sz[maxn];
int f[maxn];
int hd=0,tl=1,q[maxn];
bool vis[maxn];
stack<int> st;
void add(int bgn,int end)
{
    e[++edgenum].to=end;
    e[edgenum].nxt=lnk[bgn];
    lnk[bgn]=edgenum;
}
void c_add(int bgn,int end)
{
    ce[++cedgenum].to=end;
    ce[cedgenum].nxt=clnk[bgn];
    clnk[bgn]=cedgenum;
    dgr[end]++;
}
void tarjan(int x)
{
    dfn[x]=low[x]=++cnt;
    vis[x]=1;st.push(x);
    for(int p=lnk[x];p;p=e[p].nxt){
        int y=e[p].to;
        if(!dfn[y]){
            tarjan(y);
            low[x]=min(low[x],low[y]);
        }
        else if(vis[y])
            low[x]=min(low[x],dfn[y]);
    }
    if(low[x]==dfn[x]){
        int now;
        num++;
        do{
            now=st.top();st.pop();
            vis[now]=0;
            blk[now]=num;
        }while(now!=x);
    }
}
void toposort()
{
    for(int i=1;i<=num;++i){
        f[i]=sz[i];
        if(!dgr[i])q[tl++]=i;
    }
    while(++hd<tl){
        int u=q[hd];
        for(int p=clnk[u];p;p=ce[p].nxt){
            int y=ce[p].to;
            if(!--dgr[y])q[tl++]=y;
        }
    }
}
void solve()
{
    hd=0;
    while(++hd<tl){
        int u=q[hd];
        for(int p=clnk[u];p;p=ce[p].nxt){
            int y=ce[p].to;
            f[y]=max(f[y],f[u]+sz[y]);
        }
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i)
        scanf("%d",&k[i]);
    for(int i=1;i<=m;++i)
        scanf("%d%d",&a,&b),add(a,b);
    for(int i=1;i<=n;++i)
        if(!dfn[i])tarjan(i);
    for(int i=1;i<=n;++i){
        sz[blk[i]]+=k[i];
        for(int p=lnk[i];p;p=e[p].nxt){
            int y=e[p].to;
            if(blk[i]!=blk[y])c_add(blk[i],blk[y]);
        }
    }
    toposort();
    solve();
    int maxans=0;
    for(int i=1;i<=num;++i)
        maxans=max(maxans,f[i]);
    printf("%d\n",maxans);
    return 0;
}