离散傅里叶变换的公式为:
Xk=∑n=0N−1x(n)ωknN
ωN=e−j2πN
分成奇数列和偶数列后:
(0)
Xk=∑n=0N2−1x2nω2knN+∑n=0N2−1x2n+1ω(2n+1)kN
(1)
ω2nkN=(e−j2πN)(2n)k=e−j2πN2nk=ωnkN2
由(0)(1)得:
(2)
Xk=∑n=0N2−1x2nω2knN+∑n=0N2−1x2n+1ω(2n+1)kN=∑n=0N2−1x2nω2knN+ωkN∗∑n=0N2−1x2n+1ω2nkN=∑n=0N2−1x2nωknN2+ωkN∑n=0N2−1x2n+1ωknN2
因为
ωknN2
的周期是
N2
,所以 :
ωknN2=ω(k+N2)nN2
(3)
而
ωkN
的周期是N,
ωk+N2N=−ωkN
(4)
由(2)(3)(4)得:
Xk+N2=∑n=0N2−1x2nωknN2+ωkN∑n=0N2−1x2n+1ωknN2
{k=0—-N/2-1}(5.1)
Xk+N2=∑n=0N2−1x2nωknN2−ωkN∑n=0N2−1x2n+1ωknN2
{ k=N—-N-1}(5.2)
如何是8点的FFT
∑n=0N2−1x2nωknN2
可以看成是偶数项的DFT,同上有:
∑n=0N2−1x2nωknN2=∑n=0N4−1x2(2n)ωk(2n)N2+∑n=0N4−1x2(2n+1)ωk(2n+1)N2
=∑n=0N4−1x4nωknN4+ωkN2∑n=0N4−1x4n+2ωknN4
X1(k)=∑n=0N4−1x4nωknN4+ωkN2∑n=0N4−1x4n+2ωknN4
X1(k+N4)=∑n=0N4−1x4nωknN4−ωkN2∑n=0N4−1x4n+2ωknN4