离散傅里叶变换DFT

时间:2023-02-07 12:33:17

离散傅里叶变换的公式为:


Xk=n=0N1x(n)ωknN
ωN=ej2πN

分成奇数列和偶数列后:

(0)
Xk=n=0N21x2nω2knN+n=0N21x2n+1ω(2n+1)kN
(1)
ω2nkN=(ej2πN)(2n)k=ej2πN2nk=ωnkN2

由(0)(1)得:

(2)
Xk=n=0N21x2nω2knN+n=0N21x2n+1ω(2n+1)kN=n=0N21x2nω2knN+ωkNn=0N21x2n+1ω2nkN=n=0N21x2nωknN2+ωkNn=0N21x2n+1ωknN2

因为 ωknN2 的周期是 N2 ,所以 :

ωknN2=ω(k+N2)nN2 (3)

ωkN 的周期是N,

ωk+N2N=ωkN (4)

由(2)(3)(4)得:

Xk+N2=n=0N21x2nωknN2+ωkNn=0N21x2n+1ωknN2 {k=0—-N/2-1}(5.1)
Xk+N2=n=0N21x2nωknN2ωkNn=0N21x2n+1ωknN2 { k=N—-N-1}(5.2)

如何是8点的FFT

离散傅里叶变换DFT

n=0N21x2nωknN2 可以看成是偶数项的DFT,同上有:

n=0N21x2nωknN2=n=0N41x2(2n)ωk(2n)N2+n=0N41x2(2n+1)ωk(2n+1)N2
=n=0N41x4nωknN4+ωkN2n=0N41x4n+2ωknN4
X1(k)=n=0N41x4nωknN4+ωkN2n=0N41x4n+2ωknN4
X1(k+N4)=n=0N41x4nωknN4ωkN2n=0N41x4n+2ωknN4
离散傅里叶变换DFT