//discrete fourier tranform, 离散傅里叶变换
//头文件
#include "opencv2/core.hpp" //Core functionality,核心函数相关
#include "opencv2/imgproc.hpp" //Image processing, 图像处理相关
#include "opencv2/imgcodecs.hpp"//Image file reading and writing, 图像的加载和写出相关
#include "opencv2/highgui.hpp" //High-level GUI,图形界面GUI相关
#include <iostream>
/** * 程序流程 * 1、加载图像,格式为灰度图 * 2、获取图片dft变换的最佳大小 * 3、边框加0的方式填充图片,即非0部分为dft变换的最佳大小 * 4、创建数组储存图像实部虚部,且合并到complexI * 5、傅里叶变换 dft(complexI, complexI) * 6、重新分离实部虚部,并且计算幅度 * 7、将幅度映射到对数域 * 8、以图像中心为原点划分象限,每个象限创建一个ROI * 9、对角象限互换 * 10、显示结果 */
//命名空间
using namespace cv;
using namespace std;
//帮助函数,输出程序的信息
static void help(void)
{
cout << endl
<< "This program demonstrated the use of the discrete Fourier transform (DFT). " << endl //离散傅里叶变换示例
<< "The dft of an image is taken and it's power spectrum is displayed." << endl //离散傅里叶变换后显示功率谱
<< "Usage:" << endl
<< "./discrete_fourier_transform [image_name -- default ../data/lena.jpg]" << endl; //默认加载图片路径
}
int main(int argc, char ** argv)
{
help();
//获取图像路径(文件名),命令行输入否则默认
const char* filename = argc >=2 ? argv[1] : "../data/lena.jpg";
//加载图像,方式为加载灰度图
Mat I = imread(filename, IMREAD_GRAYSCALE);
//检查是否成功加载
if( I.empty()){
cout << "Error opening image" << endl;
return -1;
}
//! [expand]
Mat padded;
//expand input image to optimal size, 将输入图像扩展到最佳大小
int m = getOptimalDFTSize( I.rows );
int n = getOptimalDFTSize( I.cols );
// on the border add zero values,在边框上添加零值,使用copyMakeBorder函数
copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));
//! [expand]
//! [complex_and_real] 实部和虚部
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)}; //Mat 数组储存图像的实部和虚部
Mat complexI;
merge(planes, 2, complexI); // Add to the expanded another plane with zeros,用零添加到扩展的另一平面
//! [complex_and_real]
//! [dft]
//离散傅里叶变换
dft(complexI, complexI); // this way the result may fit in the source matrix,这种方式的结果可能适合在源矩阵
//! [dft]
// compute the magnitude and switch to logarithmic scale,计算幅度并映射到对数刻度
//公式 => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
//! [magnitude] 幅度
split(complexI, planes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I)),分离实部和虚部
magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude,计算幅度且存放到planes[0]
Mat magI = planes[0]; //幅度
//! [magnitude]
//! [log]
magI += Scalar::all(1); // switch to logarithmic scale,映射到对数刻度
log(magI, magI);
//! [log]
//! [crop_rearrange]裁剪重新排列
// crop the spectrum, if it has an odd number of rows or columns, 裁剪频谱, 如果它有奇数行或列数
magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2));
// rearrange the quadrants of Fourier image so that the origin is at the image center
//重新排列傅立叶图像的象限, 使原点位于图像中心
int cx = magI.cols/2;
int cy = magI.rows/2;
//每个象限新建一个ROI
Mat q0(magI, Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant, 左上,第二象限
Mat q1(magI, Rect(cx, 0, cx, cy)); // Top-Right, 右上,第一象限
Mat q2(magI, Rect(0, cy, cx, cy)); // Bottom-Left,左下,第三象限
Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right, 右下,第四象限
Mat tmp; // swap quadrants (Top-Left with Bottom-Right),交换左上和右下象限
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left),交换右上和左下象限
q2.copyTo(q1);
tmp.copyTo(q2);
//! [crop_rearrange]
//! [normalize]
//归一化,像素值都映射到[0,1]之间
normalize(magI, magI, 0, 1, NORM_MINMAX); // Transform the matrix with float values into a
// viewable image form (float between values 0 and 1).
//! [normalize]
//显示结果
imshow("Input Image" , I ); // Show the result
imshow("spectrum magnitude", magI);
waitKey();
return 0;
}
/** * 要点总结: * 加载图片格式为灰度图 * getOptimalDFTSize()函数获取最佳大小 * copyMakeBorder()加框函数 * 实部虚部 * merge()合并函数 * dft()函数 * 幅度公式sqrt(Re(DFT(I))^2 + Im(DFT(I))^2) * split()分离函数 * magnitude()计算幅度 * log()对数函数 * normalize()归一化函数 * /