【问题描述】
小C最近学了很多最小生成树的算法,Prim算法、Kurskal算法、消圈算法等等。
正当小C洋洋得意之时,小P又来泼小C冷水了。小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值)
这下小C蒙了,他找到了你,希望你帮他解决这个问题。
【输入格式】
第一行包含两个整数N 和M,表示无向图的点数与边数。 接下来 M行,每行 3个数x y z 表示,点x和点y之间有一条边,边的权值为z。
【输出格式】
包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)
【输入样例】
5 6
1 2 1
1 3 2
2 4 3
3 5 4
3 4 3
4 5 6
【输出样例】
11
【数据范围】
数据中无向图无自环;
50% 的数据N≤2 000 M≤3 000;
80% 的数据N≤50 000 M≤100 000;
100% 的数据N≤100 000 M≤300 000 ,边权值非负且不超过 10^9 。
题解:
要求求严格次小生成树,首先kruskal就无法使用,prim复杂度太高
于是我们用LCA
构造出最小生成树,可知次小生成树肯定是加入某边再删去一边
假设加入(i,j)则有删去生成树上i~j路径最大的边,用倍增维护
但是严格次小没有解决
可以在用倍增维护最大值时,再维护次小值,那么当最大值等于加入边权值时则删去次大边
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long lol;
struct Messi
{
lol u,v;
lol dis;
}edge1[];
struct Node
{
lol next,to;
lol dis;
}edge[];
lol num,head[],set[],depth[],Max[][],Max2[][],fa[][],n,m,ans1,ans=2e9;
bool vis[],b[];
bool cmp(Messi a,Messi b)
{
return a.dis<b.dis;
}
void add(lol u,lol v,lol dis)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
edge[num].dis=dis;
}
lol find(lol x)
{
if (set[x]!=x) set[x]=find(set[x]);
return set[x];
}
void dfs(lol x,lol dep)
{int i;
vis[x]=;
depth[x]=dep;
for (i=;i<=;i++)
if (dep>(<<i))
{
Max[x][i]=max(Max[x][i-],Max[fa[x][i-]][i-]);
if (Max[x][i-]!=Max[fa[x][i-]][i-]) Max2[x][i]=Max[x][i-]+Max[fa[x][i-]][i-]-Max[x][i];
Max2[x][i]=max(Max2[x][i],max(Max2[x][i-],Max2[fa[x][i-]][i-]));
fa[x][i]=fa[fa[x][i-]][i-];
}
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (vis[v]==)
{
fa[v][]=x;
Max[v][]=edge[i].dis;
dfs(v,dep+);
}
}
}
lol ask(lol x,lol y,lol d)
{int i;
lol s1=,s2=;
if (depth[x]<depth[y]) swap(x,y);
for (i=;i>=;i--)
if ((<<i)<=depth[x]-depth[y])
{
if (s1!=Max[x][i]) s2=max(s2,min(s1,Max[x][i]));
s2=max(s2,Max2[x][i]);
s1=max(s1,Max[x][i]);
x=fa[x][i];
}
if (x==y)
{
if (s1==d&&s2) return d-s2;
else if (s2==) return 2e9;
else if (s1!=d)return d-s1;
}
for (i=;i>=;i--)
{
if ((<<i)<depth[x]&&fa[x][i]!=fa[y][i])
{
if (s1!=Max[x][i]) s2=max(s2,min(s1,Max[x][i]));
s2=max(s2,Max2[x][i]);
s1=max(s1,Max[x][i]);
if (s1!=Max[y][i]) s2=max(s2,min(s1,Max[y][i]));
s2=max(s2,Max2[y][i]);
s1=max(s1,Max[y][i]);
x=fa[x][i];y=fa[y][i];
}
}
if (s1!=Max[x][]) s2=max(s2,min(s1,Max[x][]));
s2=max(s2,Max2[x][]);
s1=max(s1,Max[x][]);
if (s1!=Max[y][]) s2=max(s2,min(s1,Max[y][]));
s2=max(s2,Max2[y][]);
s1=max(s1,Max[y][]);
x=fa[x][];y=fa[y][];
if (s1==d&&s2) return d-s2;
else if (s2==) return 2e9;
else if (s1!=d)return d-s1;
}
int main()
{int i,j,q,opt,x,y;
//freopen("scrip.in","r",stdin);
//freopen("scrip.out","w",stdout);
cin>>n>>m;
for (i=;i<=m;i++)
{
scanf("%d%d%d",&edge1[i].u,&edge1[i].v,&edge1[i].dis);
}
sort(edge1+,edge1+m+,cmp);
for (i=;i<=n;i++)
set[i]=i;
i=;j=;
while (i<=n-&&j<=m)
{
int p=find(edge1[j].u),q=find(edge1[j].v);
if (p!=q)
{
set[p]=q;
i++;
b[j]=;
ans1+=edge1[j].dis;
add(edge1[j].u,edge1[j].v,edge1[j].dis);
add(edge1[j].v,edge1[j].u,edge1[j].dis);
}
j++;
}
if (i<=n-)
{
cout<<"No MST!";
return ;
}
dfs(,);
for (j=;j<=m;j++)
{
if (b[j]==)
{
ans=min(ans,ask(edge1[j].u,edge1[j].v,edge1[j].dis));
}
}
if (ans==2e9)
{
cout<<"No SST!";
return ;
}
cout<<ans+ans1;
}