package com.test.spark.apps.graph
import org.apache.log4j.{Level, Logger}
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
object SNSAnalysisGraphX {
def main(args: Array[String]) {
//屏蔽日志
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
//设置运行环境
val conf = new SparkConf().setAppName("SNSAnalysisGraphX").setMaster("local[4]")
val sc = new SparkContext(conf)
//设置顶点和边,注意顶点和边都是用元组定义的Array
//顶点的数据类型是VD:(String,Int)
val vertexArray = Array(
(1L, ("Alice", 28)),
(2L, ("Bob", 27)),
(3L, ("Charlie", 65)),
(4L, ("David", 42)),
(5L, ("Ed", 55)),
(6L, ("Fran", 50))
)
//边的数据类型ED:Int
val edgeArray = Array(
Edge(2L, 1L, 7),
Edge(2L, 4L, 2),
Edge(3L, 2L, 4),
Edge(3L, 6L, 3),
Edge(4L, 1L, 1),
Edge(5L, 2L, 2),
Edge(5L, 3L, 8),
Edge(5L, 6L, 3)
)
//构造vertexRDD和edgeRDD
val vertexRDD: RDD[(Long, (String, Int))] = sc.parallelize(vertexArray)
val edgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray)
//构造图Graph[VD,ED]
val graph: Graph[(String, Int), Int] = Graph(vertexRDD, edgeRDD)
//***************************************************************************************************
//******************************* 图的属性 *****************************************
//***************************************************************************************************
println("**********************************************************")
println("属性演示")
println("**********************************************************")
//方法一
println("找出图中年龄大于30的顶点方法一:")
/**
* 其实这里还可以加入性别等信息,例如我们可以看年龄大于30岁且是female的人
*/
graph.vertices.filter { case (id, (name, age)) => age > 30}.collect.foreach {
case (id, (name, age)) => println(s"$name is $age")
}
//方法二
println("找出图中年龄大于30的顶点方法二:")
graph.vertices.filter(v => v._2._2 > 30).collect.foreach(v => println(s"${v._2._1} is ${v._2._2}"))
println
//边操作:找出图中属性大于5的边
println("找出图中属性大于5的边:")
graph.edges.filter(e => e.attr > 5).collect.foreach(e => println(s"${e.srcId} to ${e.dstId} att ${e.attr}"))
println
//triplets操作,((srcId, srcAttr), (dstId, dstAttr), attr)
println("列出所有的tripltes:")
for (triplet <- graph.triplets.collect) {
println(s"${triplet.srcAttr._1} likes ${triplet.dstAttr._1}")
}
println
println("列出边属性>5的tripltes:")
for (triplet <- graph.triplets.filter(t => t.attr > 5).collect) {
println(s"${triplet.srcAttr._1} likes ${triplet.dstAttr._1}")
}
println
//Degrees操作
println("找出图中最大的出度、入度、度数:")
def max(a: (VertexId, Int), b: (VertexId, Int)): (VertexId, Int) = {
if (a._2 > b._2) a else b
}
println("max of outDegrees:" + graph.outDegrees.reduce(max) + " max of inDegrees:" + graph.inDegrees.reduce(max) + " max of Degrees:" + graph.degrees.reduce(max))
println
//***************************************************************************************************
//******************************* 转换操作 *****************************************
//***************************************************************************************************
println("**********************************************************")
println("转换操作")
println("**********************************************************")
println("顶点的转换操作,顶点age + 10:")
graph.mapVertices{ case (id, (name, age)) => (id, (name, age+10))}.vertices.collect.foreach(v => println(s"${v._2._1} is ${v._2._2}"))
println
println("边的转换操作,边的属性*2:")
graph.mapEdges(e=>e.attr*2).edges.collect.foreach(e => println(s"${e.srcId} to ${e.dstId} att ${e.attr}"))
println
//***************************************************************************************************
//******************************* 结构操作 *****************************************
//***************************************************************************************************
println("**********************************************************")
println("结构操作")
println("**********************************************************")
println("顶点年纪>30的子图:")
val subGraph = graph.subgraph(vpred = (id, vd) => vd._2 >= 30)
println("子图所有顶点:")
subGraph.vertices.collect.foreach(v => println(s"${v._2._1} is ${v._2._2}"))
println
println("子图所有边:")
subGraph.edges.collect.foreach(e => println(s"${e.srcId} to ${e.dstId} att ${e.attr}"))
println
//***************************************************************************************************
//******************************* 连接操作 *****************************************
//***************************************************************************************************
println("**********************************************************")
println("连接操作")
println("**********************************************************")
val inDegrees: VertexRDD[Int] = graph.inDegrees
case class User(name: String, age: Int, inDeg: Int, outDeg: Int)
//创建一个新图,顶点VD的数据类型为User,并从graph做类型转换
val initialUserGraph: Graph[User, Int] = graph.mapVertices { case (id, (name, age)) => User(name, age, 0, 0)}
//initialUserGraph与inDegrees、outDegrees(RDD)进行连接,并修改initialUserGraph中inDeg值、outDeg值
val userGraph = initialUserGraph.outerJoinVertices(initialUserGraph.inDegrees) {
case (id, u, inDegOpt) => User(u.name, u.age, inDegOpt.getOrElse(0), u.outDeg)
}.outerJoinVertices(initialUserGraph.outDegrees) {
case (id, u, outDegOpt) => User(u.name, u.age, u.inDeg, outDegOpt.getOrElse(0))
}
println("连接图的属性:")
userGraph.vertices.collect.foreach(v => println(s"${v._2.name} inDeg: ${v._2.inDeg} outDeg: ${v._2.outDeg}"))
println
println("出度和入读相同的人员:")
userGraph.vertices.filter {
case (id, u) => u.inDeg == u.outDeg
}.collect.foreach {
case (id, property) => println(property.name)
}
println
//***************************************************************************************************
//******************************* 聚合操作 *****************************************
//***************************************************************************************************
// println("**********************************************************")
// println("聚合操作")
// println("**********************************************************")
// println("找出年纪最大的追求者:")
// val oldestFollower: VertexRDD[(String, Int)] = userGraph.mapReduceTriplets[(String, Int)](
// // 将源顶点的属性发送给目标顶点,map过程
// edge => Iterator((edge.dstId, (edge.srcAttr.name, edge.srcAttr.age))),
// // 得到最大追求者,reduce过程
// (a, b) => if (a._2 > b._2) a else b
// )
// userGraph.vertices.leftJoin(oldestFollower) { (id, user, optOldestFollower) =>
// optOldestFollower match {
// case None => s"${user.name} does not have any followers."
// case Some((name, age)) => s"${name} is the oldest follower of ${user.name}."
// }
// }.collect.foreach { case (id, str) => println(str)}
// println
//找出追求者的平均年纪
// println("找出追求者的平均年纪:")
// val averageAge: VertexRDD[Double] = userGraph.mapReduceTriplets[(Int, Double)](
// // 将源顶点的属性 (1, Age)发送给目标顶点,map过程
// edge => Iterator((edge.dstId, (1, edge.srcAttr.age.toDouble))),
// // 得到追求着的数量和总年龄
// (a, b) => ((a._1 + b._1), (a._2 + b._2))
// ).mapValues((id, p) => p._2 / p._1)
// userGraph.vertices.leftJoin(averageAge) { (id, user, optAverageAge) =>
// optAverageAge match {
// case None => s"${user.name} does not have any followers."
// case Some(avgAge) => s"The average age of ${user.name}\'s followers is $avgAge."
// }
// }.collect.foreach { case (id, str) => println(str)}
// println
//***************************************************************************************************
//******************************* 实用操作 *****************************************
//***************************************************************************************************
println("**********************************************************")
println("聚合操作")
println("**********************************************************")
println("找出5到各顶点的最短:")
val sourceId: VertexId = 5L // 定义源点
val initialGraph = graph.mapVertices((id, _) => if (id == sourceId) 0.0 else Double.PositiveInfinity)
val sssp = initialGraph.pregel(Double.PositiveInfinity)(
(id, dist, newDist) => math.min(dist, newDist),
triplet => { // 计算权重
if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {
Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))
} else {
Iterator.empty
}
},
(a,b) => math.min(a,b) // 最短距离
)
println(sssp.vertices.collect.mkString("\n"))
sc.stop()
}
}
相关文章
- Spark GraphX 属性图操作
- 基于Spark的图计算框架 GraphX 入门介绍
- Spark RDD/Core 编程 API入门系列 之rdd实战(rdd基本操作实战及transformation和action流程图)(源码)(三)
- 明风:分布式图计算的平台Spark GraphX 在淘宝的实践
- GraphX:基于Spark的弹性分布式图计算系统
- Spark GraphX进行图计算时的OOM问题
- spark graphx图计算常用操作实战
- GraphX:基于Spark的弹性分布式图计算系统
- spark graphx 图计算demo,结果展现
- 图并行计算实践(二)(spark streaming+graphx+kafka)