spark graphx图计算常用操作实战

时间:2022-08-21 23:24:43
package com.test.spark.apps.graph


import org.apache.log4j.{Level, Logger}
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD


object SNSAnalysisGraphX {
  def main(args: Array[String]) {
    //屏蔽日志
    Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
    Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)


    //设置运行环境
    val conf = new SparkConf().setAppName("SNSAnalysisGraphX").setMaster("local[4]")
    val sc = new SparkContext(conf)


    //设置顶点和边,注意顶点和边都是用元组定义的Array
    //顶点的数据类型是VD:(String,Int)
    val vertexArray = Array(
      (1L, ("Alice", 28)),
      (2L, ("Bob", 27)),
      (3L, ("Charlie", 65)),
      (4L, ("David", 42)),
      (5L, ("Ed", 55)),
      (6L, ("Fran", 50))
    )
    //边的数据类型ED:Int
    val edgeArray = Array(
      Edge(2L, 1L, 7),
      Edge(2L, 4L, 2),
      Edge(3L, 2L, 4),
      Edge(3L, 6L, 3),
      Edge(4L, 1L, 1),
      Edge(5L, 2L, 2),
      Edge(5L, 3L, 8),
      Edge(5L, 6L, 3)
    )


    //构造vertexRDD和edgeRDD
    val vertexRDD: RDD[(Long, (String, Int))] = sc.parallelize(vertexArray)
    val edgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray)


    //构造图Graph[VD,ED]
    val graph: Graph[(String, Int), Int] = Graph(vertexRDD, edgeRDD)


    //***************************************************************************************************
    //*******************************          图的属性          *****************************************
    //***************************************************************************************************
    println("**********************************************************")
    println("属性演示")
    println("**********************************************************")
    //方法一
    println("找出图中年龄大于30的顶点方法一:")


    /**
      * 其实这里还可以加入性别等信息,例如我们可以看年龄大于30岁且是female的人
      */
    graph.vertices.filter { case (id, (name, age)) => age > 30}.collect.foreach {
      case (id, (name, age)) => println(s"$name is $age")
    }
    //方法二
    println("找出图中年龄大于30的顶点方法二:")
    graph.vertices.filter(v => v._2._2 > 30).collect.foreach(v => println(s"${v._2._1} is ${v._2._2}"))
    println


    //边操作:找出图中属性大于5的边
    println("找出图中属性大于5的边:")
    graph.edges.filter(e => e.attr > 5).collect.foreach(e => println(s"${e.srcId} to ${e.dstId} att ${e.attr}"))
    println




    //triplets操作,((srcId, srcAttr), (dstId, dstAttr), attr)
    println("列出所有的tripltes:")
    for (triplet <- graph.triplets.collect) {
      println(s"${triplet.srcAttr._1} likes ${triplet.dstAttr._1}")
    }
    println


    println("列出边属性>5的tripltes:")
    for (triplet <- graph.triplets.filter(t => t.attr > 5).collect) {
      println(s"${triplet.srcAttr._1} likes ${triplet.dstAttr._1}")
    }
    println


    //Degrees操作
    println("找出图中最大的出度、入度、度数:")
    def max(a: (VertexId, Int), b: (VertexId, Int)): (VertexId, Int) = {
      if (a._2 > b._2) a else b
    }
    println("max of outDegrees:" + graph.outDegrees.reduce(max) + " max of inDegrees:" + graph.inDegrees.reduce(max) + " max of Degrees:" + graph.degrees.reduce(max))
    println


    //***************************************************************************************************
    //*******************************          转换操作          *****************************************
    //***************************************************************************************************
    println("**********************************************************")
    println("转换操作")
    println("**********************************************************")
    println("顶点的转换操作,顶点age + 10:")
    graph.mapVertices{ case (id, (name, age)) => (id, (name, age+10))}.vertices.collect.foreach(v => println(s"${v._2._1} is ${v._2._2}"))
    println
    println("边的转换操作,边的属性*2:")
    graph.mapEdges(e=>e.attr*2).edges.collect.foreach(e => println(s"${e.srcId} to ${e.dstId} att ${e.attr}"))
    println




    //***************************************************************************************************
    //*******************************          结构操作          *****************************************
    //***************************************************************************************************
    println("**********************************************************")
    println("结构操作")
    println("**********************************************************")
    println("顶点年纪>30的子图:")
    val subGraph = graph.subgraph(vpred = (id, vd) => vd._2 >= 30)
    println("子图所有顶点:")
    subGraph.vertices.collect.foreach(v => println(s"${v._2._1} is ${v._2._2}"))
    println
    println("子图所有边:")
    subGraph.edges.collect.foreach(e => println(s"${e.srcId} to ${e.dstId} att ${e.attr}"))
    println


    //***************************************************************************************************
    //*******************************          连接操作          *****************************************
    //***************************************************************************************************
    println("**********************************************************")
    println("连接操作")
    println("**********************************************************")
    val inDegrees: VertexRDD[Int] = graph.inDegrees
    case class User(name: String, age: Int, inDeg: Int, outDeg: Int)


    //创建一个新图,顶点VD的数据类型为User,并从graph做类型转换
    val initialUserGraph: Graph[User, Int] = graph.mapVertices { case (id, (name, age)) => User(name, age, 0, 0)}


    //initialUserGraph与inDegrees、outDegrees(RDD)进行连接,并修改initialUserGraph中inDeg值、outDeg值
    val userGraph = initialUserGraph.outerJoinVertices(initialUserGraph.inDegrees) {
      case (id, u, inDegOpt) => User(u.name, u.age, inDegOpt.getOrElse(0), u.outDeg)
    }.outerJoinVertices(initialUserGraph.outDegrees) {
      case (id, u, outDegOpt) => User(u.name, u.age, u.inDeg, outDegOpt.getOrElse(0))
    }


    println("连接图的属性:")
    userGraph.vertices.collect.foreach(v => println(s"${v._2.name} inDeg: ${v._2.inDeg}  outDeg: ${v._2.outDeg}"))
    println


    println("出度和入读相同的人员:")
    userGraph.vertices.filter {
      case (id, u) => u.inDeg == u.outDeg
    }.collect.foreach {
      case (id, property) => println(property.name)
    }
    println


    //***************************************************************************************************
    //*******************************          聚合操作          *****************************************
    //***************************************************************************************************
//    println("**********************************************************")
//    println("聚合操作")
//    println("**********************************************************")
//    println("找出年纪最大的追求者:")
//    val oldestFollower: VertexRDD[(String, Int)] = userGraph.mapReduceTriplets[(String, Int)](
//      // 将源顶点的属性发送给目标顶点,map过程
//      edge => Iterator((edge.dstId, (edge.srcAttr.name, edge.srcAttr.age))),
//      // 得到最大追求者,reduce过程
//      (a, b) => if (a._2 > b._2) a else b
//    )




//    userGraph.vertices.leftJoin(oldestFollower) { (id, user, optOldestFollower) =>
//      optOldestFollower match {
//        case None => s"${user.name} does not have any followers."
//        case Some((name, age)) => s"${name} is the oldest follower of ${user.name}."
//      }
//    }.collect.foreach { case (id, str) => println(str)}
//    println


    //找出追求者的平均年纪
//    println("找出追求者的平均年纪:")
//    val averageAge: VertexRDD[Double] = userGraph.mapReduceTriplets[(Int, Double)](
//      // 将源顶点的属性 (1, Age)发送给目标顶点,map过程
//      edge => Iterator((edge.dstId, (1, edge.srcAttr.age.toDouble))),
//      // 得到追求着的数量和总年龄
//      (a, b) => ((a._1 + b._1), (a._2 + b._2))
//    ).mapValues((id, p) => p._2 / p._1)


//    userGraph.vertices.leftJoin(averageAge) { (id, user, optAverageAge) =>
//      optAverageAge match {
//        case None => s"${user.name} does not have any followers."
//        case Some(avgAge) => s"The average age of ${user.name}\'s followers is $avgAge."
//      }
//    }.collect.foreach { case (id, str) => println(str)}
//    println


    //***************************************************************************************************
    //*******************************          实用操作          *****************************************
    //***************************************************************************************************
    println("**********************************************************")
    println("聚合操作")
    println("**********************************************************")
    println("找出5到各顶点的最短:")
    val sourceId: VertexId = 5L // 定义源点
    val initialGraph = graph.mapVertices((id, _) => if (id == sourceId) 0.0 else Double.PositiveInfinity)
    val sssp = initialGraph.pregel(Double.PositiveInfinity)(
      (id, dist, newDist) => math.min(dist, newDist),
      triplet => {  // 计算权重
        if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {
          Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))
        } else {
          Iterator.empty
        }
      },
      (a,b) => math.min(a,b) // 最短距离
    )
    println(sssp.vertices.collect.mkString("\n"))


    sc.stop()
  }
}