使用scrapy-crawlSpider 爬取tencent 招聘

时间:2024-03-25 20:35:32

Tencent 招聘信息网站

创建项目

scrapy startproject Tencent

创建爬虫

scrapy  genspider -t crawl tencent

1. 起始url  start_url = 'https://hr.tencent.com/position.php'

使用scrapy-crawlSpider 爬取tencent 招聘

在起始页面,需要获取该也页面上的每个职位的详情页的url,同时需要提取下一页的url地址,做同样的操作。

因此起始页url地址的提取,分为两类:

  1. 每个职位详情页的url地址的提取

  2. 下一页url地址的提取,并且得到的页面做的操作和起始页的操作一样。

url地址的提取

1. 提取详情页url,详情页的url地址如下:

使用scrapy-crawlSpider 爬取tencent 招聘

 提取规则详情页的规则:

rules = (
# 提取详情页的url地址 ,详情页url地址对应的响应,需要进行数据提取,所有需要有回调函数,用来解析数据 Rule(LinkExtractor(restrict_xpaths=("//table[@class='tablelist']//td[@class='l square']")), callback='parse_item')
)

提取下一页的htmlj所在的位置:

使用scrapy-crawlSpider 爬取tencent 招聘

2 获取下一页的url 规则:

rules = (
# 提取详情页的url地址
# Rule(LinkExtractor(allow=r'position_detail.php?id=\d+\&keywords=&tid=0&lid=0'), callback='parse_item'), # 这个表达式有错,这里不用正则
Rule(LinkExtractor(restrict_xpaths=("//table[@class='tablelist']//td[@class='l square']")), callback='parse_item'),
# 翻页
Rule(LinkExtractor(restrict_xpaths=("//a[@id='next']")), follow=
True),
)

获取详情页数据

使用scrapy-crawlSpider 爬取tencent 招聘

1.详情数据提取(爬虫逻辑)

1.获取标题

使用scrapy-crawlSpider 爬取tencent 招聘

xpath:

item['title'] = response.xpath('//td[@id="sharetitle"]/text()').extract_first()

2. 获取工作地点,职位,招聘人数

使用scrapy-crawlSpider 爬取tencent 招聘

xpath:

 item['addr'] = response.xpath('//tr[@class="c bottomline"]/td[1]//text()').extract()[1]

 item['position'] = response.xpath('//tr[@class="c bottomline"]/td[2]//text()').extract()[1]

 item['num'] = response.xpath('//tr[@class="c bottomline"]/td[3]//text()').extract()[1]

3.工作要求抓取

使用scrapy-crawlSpider 爬取tencent 招聘

xpath:

item['skill'] =response.xpath('//ul[@class="squareli"]/li/text()').extract()

爬虫的代码:

# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule from ..items import TencentItem class TencentSpider(CrawlSpider):
name = 'tencent'
allowed_domains = ['hr.tencent.com']
start_urls = ['https://hr.tencent.com/position.php'] rules = (
# 提取详情页的url地址
# Rule(LinkExtractor(allow=r'position_detail.php?id=\d+\&keywords=&tid=0&lid=0'), callback='parse_item'), # 这个表达式有错
Rule(LinkExtractor(restrict_xpaths=("//table[@class='tablelist']//td[@class='l square']")), callback='parse_item'),
# 翻页
Rule(LinkExtractor(restrict_xpaths=("//a[@id='next']")), follow=True),
) def parse_item(self, response): item = TencentItem() item['title'] = response.xpath('//td[@id="sharetitle"]/text()').extract_first() item['addr'] = response.xpath('//tr[@class="c bottomline"]/td[1]//text()').extract()[0] item['position'] = response.xpath('//tr[@class="c bottomline"]/td[2]//text()').extract()[0] item['num'] = response.xpath('//tr[@class="c bottomline"]/td[3]//text()').extract()[0] item['skill'] =response.xpath('//ul[@class="squareli"]/li/text()').extract() print(dict(item)) return item

tencent.py

2. 数据存储

1.settings.py 配置文件,配置如下信息

ROBOTSTXT_OBEY = False
USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'
ITEM_PIPELINES = {
'jd.pipelines.TencentPipeline': 300, }

2. items.py 中:

import scrapy

class TencentItem(scrapy.Item):
# define the fields for your item here like:
title = scrapy.Field()
addr = scrapy.Field()
position = scrapy.Field()
num = scrapy.Field()
skill = scrapy.Field()

3. pipeline.py中:

import  pymongo

class TencentPipeline(object):

    def open_spider(self,spider):
# 爬虫开启是连接数据库
client = pymongo.MongoClient() collention = client.tencent.ten self.client =client self.collention = collention pass
def process_item(self, item, spider): # 数据保存在mongodb 中 self.collention.insert(dict(item)) return item def colse_spdier(self,spider): # 爬虫结束,关闭数据库 self.client.close()

启动项目

1.先将MongoDB数据库跑起来。

2.执行爬虫命令:

scrapy  crawl  tencent

3. 执行程序后的效果:

使用scrapy-crawlSpider 爬取tencent 招聘