此篇是利用matlab对caffemodel的卷积核进行可视化。只介绍了卷积核的可视化,不涉及特征图的可视化。
是参考此博客:
前期准备,需要两个东西
1. 模型的描述文件 deploy.prototxt
2. 模型本身lenet_iter_10000.caffemodel (此处用的examples中的mnist里的)
第一步:
在创建D:\caffe-master\matlab\demo 下创建 visualizing.m
clc clear addpath(‘..‘) % 加入+caffe路径 caffe.set_mode_cpu() ;% 设置CPU模式 model = ‘D:/caffe-master/examples/mnist/lenet.prototxt‘; % 模型描述 weights = ‘D:/caffe-master/examples/mnist/lenet_iter_10000.caffemodel‘; % 参数 net = caffe.Net(model,‘test‘); % 读取net weight_partvisual( net, 1,1) % 调用部分显示函数 weight_partvisual( net,layer_num ,channels_num ) % layer_num是第几个卷积层, channels_num 表示 % 显示第几个通道的卷积核,取值范围为 (0,上一层的特征图数)
第二步:
在创建D:\caffe-master\matlab\demo 下创建weight_partvisual.m
function [ ] = weight_partvisual( net,layer_num ,channels_num ) layers=net.layer_names; convlayer=[]; for i=1:length(layers) if strcmp(layers{i}(1:3),‘con‘) convlayer=[convlayer;layers{i}]; end end w=net.layers(convlayer(layer_num,:)).params(1).get_data(); b=net.layers(convlayer(layer_num,:)).params(2).get_data(); w=w-min(w(:)); w=w/max(w(:))*255; weight=w(:,:,channels_num,:);%四维,核长*核宽*核左边输入*核右边输出(核个数) [kernel_r,kernel_c,input_num,kernel_num]=size(w); map_row=ceil(sqrt(kernel_num));%行数 map_col=map_row;%列数 weight_map=zeros(kernel_r*map_row,kernel_c*map_col); kernelcout_map=1; for i=0:map_row-1 for j=0:map_col-1 if kernelcout_map<=kernel_num weight_map(i*kernel_r+1+i:(i+1)*kernel_r+i,j*kernel_c+1+j:(j+1)*kernel_c+j)=weight(:,:,:,kernelcout_map); kernelcout_map=kernelcout_map+1; end end end figure hAxe=axes(‘Parent‘,gcf,... % 设置新的axe, 将‘parent‘ 属性设置为当前窗口gcf ‘Units‘,‘pixels‘,... %设置单位为pixels ‘Position‘,[500 0 605 705]); % 指定axe的位置 left和bottom设定了axe的左下角坐标,width和height设定了窗口的宽度和高度 axes(hAxe); imshow(uint8(weight_map)) str1=strcat(‘weight num:‘,num2str(kernelcout_map-1)); title(str1) end
运行 visualizing.m
结果如图:
感觉看不出什么规律来,是否因为mnist图像太小? 而像训练imagenet时模型输入是 256*256,因此训练得到的卷积核看起来有一些规律(类似边缘)。
PS: 这里用的是将 权值(w -min(w) / max(w) ) *255
这个原理没搞明白,,如果有清楚的同学告诉我吧,THX~
【caffe-windows】 caffe-master 之 卷积核可视化(利用matlab)