Codeforces Round #375 (Div. 2) F. st-Spanning Tree 生成树

时间:2023-01-17 08:02:31

F. st-Spanning Tree

题目连接:

http://codeforces.com/contest/723/problem/F

Description

You are given an undirected connected graph consisting of n vertices and m edges. There are no loops and no multiple edges in the graph.

You are also given two distinct vertices s and t, and two values ds and dt. Your task is to build any spanning tree of the given graph (note that the graph is not weighted), such that the degree of the vertex s doesn't exceed ds, and the degree of the vertex t doesn't exceed dt, or determine, that there is no such spanning tree.

The spanning tree of the graph G is a subgraph which is a tree and contains all vertices of the graph G. In other words, it is a connected graph which contains n - 1 edges and can be obtained by removing some of the edges from G.

The degree of a vertex is the number of edges incident to this vertex.

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 200 000, 1 ≤ m ≤ min(400 000, n·(n - 1) / 2)) — the number of vertices and the number of edges in the graph.

The next m lines contain the descriptions of the graph's edges. Each of the lines contains two integers u and v (1 ≤ u, v ≤ n, u ≠ v) — the ends of the corresponding edge. It is guaranteed that the graph contains no loops and no multiple edges and that it is connected.

The last line contains four integers s, t, ds, dt (1 ≤ s, t ≤ n, s ≠ t, 1 ≤ ds, dt ≤ n - 1).

Output

If the answer doesn't exist print "No" (without quotes) in the only line of the output.

Otherwise, in the first line print "Yes" (without quotes). In the each of the next (n - 1) lines print two integers — the description of the edges of the spanning tree. Each of the edges of the spanning tree must be printed exactly once.

You can output edges in any order. You can output the ends of each edge in any order.

If there are several solutions, print any of them.

Sample Input

3 3

1 2

2 3

3 1

1 2 1 1

Sample Output

Yes

3 2

1 3

Hint

题意

给你一个无向图,问你能不能找到一颗生成树,使得这个生成树包含S点和T点,且S点的度数不超过DS,T点的度数不超过DT

题解:

我们首先把S点和T点都拿走,然后跑一个生成树,那么现在的图就是一个森林了。

首先我们让S和T都连到同一个连通块去。

然后再贪心的去连,S优先连T不能够连接的连通块,再让T连接S不能连接的连通块,再去连接都能够连接的连通块。

其实感觉上是一个乱搞题[二哈]

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+7;
vector<pair<int,int> >ans;
vector<int>E[maxn];
int s,t,ds,dt,fa[maxn],vis[maxn],n,m,link1[maxn],link2[maxn];
vector<int> c;
int fi(int x)
{
return fa[x]==x?x:fa[x]=fi(fa[x]);
}
void uni(int x,int y)
{
x=fi(x),y=fi(y);
fa[x]=y;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
E[x].push_back(y);
E[y].push_back(x);
}
for(int i=1;i<=n;i++)
fa[i]=i;
scanf("%d%d%d%d",&s,&t,&ds,&dt);
for(int i=1;i<=n;i++)
{
if(i==s||i==t)continue;
for(int j=0;j<E[i].size();j++)
{
int v=E[i][j];
if(v==s||v==t)continue;
if(fi(i)!=fi(v))
{
ans.push_back(make_pair(i,v));
uni(i,v);
}
}
}
int flag = 0;
for(int i=0;i<E[s].size();i++)
{
int v=E[s][i];
link1[fi(E[s][i])]=1;
}
for(int i=0;i<E[t].size();i++)
{
int v=E[t][i];
link2[fi(E[t][i])]=1;
}
if(!flag)
{
for(int i=0;i<E[t].size();i++)
{
int v=E[t][i];
if(link1[fi(v)])
{
vis[fi(v)]=1;
dt--;
ans.push_back(make_pair(t,v));
uni(t,v);
break;
}
}
for(int i=0;i<E[s].size();i++)
{
int v=E[s][i];
if(vis[v])
{
ds--;
ans.push_back(make_pair(s,v));
uni(s,v);
break;
}
}
}
for(int i=0;i<E[s].size();i++)
{
if(!link2[E[s][i]]&&ds&&fi(s)!=fi(E[s][i]))
{
ans.push_back(make_pair(s,E[s][i]));
uni(s,E[s][i]);
ds--;
}
}
for(int i=0;i<E[t].size();i++)
{
if(!link1[E[t][i]]&&dt&&fi(t)!=fi(E[t][i]))
{
ans.push_back(make_pair(t,E[t][i]));
uni(t,E[t][i]);
dt--;
}
}
for(int i=0;i<E[s].size();i++)
{
if(ds&&fi(s)!=fi(E[s][i]))
{
ans.push_back(make_pair(s,E[s][i]));
uni(s,E[s][i]);
ds--;
}
}
for(int i=0;i<E[t].size();i++)
{
if(dt&&fi(t)!=fi(E[t][i]))
{
ans.push_back(make_pair(t,E[t][i]));
uni(t,E[t][i]);
dt--;
}
}
if(fi(s)!=fi(t))
{
for(int i=0;i<E[s].size();i++)
{
if(E[s][i]==t)
{
uni(s,t);
ans.push_back(make_pair(s,t));
}
}
}
if(ans.size()==n-1)
{
cout<<"Yes"<<endl;
for(int i=0;i<ans.size();i++)
cout<<ans[i].first<<" "<<ans[i].second<<endl;
}
else
cout<<"No"<<endl;
}

Codeforces Round #375 (Div. 2) F. st-Spanning Tree 生成树的更多相关文章

  1. Codeforces Round &num;375 &lpar;Div&period; 2&rpar; F&period; st-Spanning Tree

    传送门 分析:构造题.可以这么想:先把s,t两个点去掉,把剩下的点先并查集合并.这样会出现个集合:, , 个剩余集合.那么个集合中先把只能与或中一个相连的连起来,如果这样已经超出了要求,那么就不能构造 ...

  2. Codeforces Round &num;486 &lpar;Div&period; 3&rpar; F&period; Rain and Umbrellas

    Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...

  3. Codeforces Round &num;485 &lpar;Div&period; 2&rpar; F&period; AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  4. Codeforces Round &num;501 &lpar;Div&period; 3&rpar; F&period; Bracket Substring

    题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...

  5. Codeforces Round &num;499 &lpar;Div&period; 1&rpar; F&period; Tree

    Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...

  6. Codeforces Round &num;271 &lpar;Div&period; 2&rpar; F&period; Ant colony &lpar;RMQ or 线段树&rpar;

    题目链接:http://codeforces.com/contest/474/problem/F 题意简而言之就是问你区间l到r之间有多少个数能整除区间内除了这个数的其他的数,然后区间长度减去数的个数 ...

  7. Codeforces Round &num;538 &lpar;Div&period; 2&rpar; F 欧拉函数 &plus; 区间修改线段树

    https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...

  8. Codeforces Round &num;524 &lpar;Div&period; 2&rpar; F&period; Katya and Segments Sets(主席树)

    https://codeforces.com/contest/1080/problem/F 题意 有k个区间,区间的种类有n种,有m个询问(n,m<=1e5,k<=3e5),每次询问a,b ...

  9. Codeforces Round &num;525 &lpar;Div&period; 2&rpar; F&period; Ehab and a weird weight formula

    F. Ehab and a weird weight formula 题目链接:https://codeforces.com/contest/1088/problem/F 题意: 给出一颗点有权值的树 ...

随机推荐

  1. 让T4脱离VS生成代码

    让T4脱离VS生成代码 最近项目快结束:空闲时间相对多一点:为了以后工作方便点:索性研究了VS的T4: 写个代码生成器:以后可以通过代码生成器调用项目里面的Dll直接生成代码或者xml: 应用以下两个 ...

  2. hdu 5791 &lpar;DP&rpar; Two

    hdu 5791 Two Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  3. 有图有真相,分享一款网页版HTML5飞机射击游戏

    本飞机射击游戏是使用HTML5代码写的,尝试通过统一开发环境(UDE)将游戏托管在MM应用引擎,直接生成了网页版游戏,游戏简单易上手,非常适合用来当做小休闲打发时间. 游戏地址:http://flyg ...

  4. 制作Android Demo GIF:程序演示效果GIF图录制

    [转] 制作Android Demo GIF:程序演示效果GIF图录制   在平时写博客或者分享自己写的程序效果的时候经常需要做成GIF图,以下就是介绍几种常用的GIF录制方法: 一.录制工具 1.( ...

  5. linux配置yum源

    yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理,能够从指定的服务器自动下载RP ...

  6. ui的设计原则

    部分网页设计原则 规划目录结构时应当遵循的几个原则: 1.不要将所有文件都存放在根目录下; 2.按栏目内容分别建立子目录; 3.在每个主目录下都建立独立的images目录; 4.目录的层次不要太深; ...

  7. sql报错注入:extractvalue、updatexml报错原理

    报错注入:extractvalue.updatexml报错原理 MySQL 5.1.5版本中添加了对XML文档进行查询和修改的两个函数:extractvalue.updatexml 名称 描述 Ext ...

  8. 023&lowbar;System Integrity Protection in macos

    背景:之前写的在/usr/bin下的一个登陆线上脚本,由于使用timemachine还原了系统,发现怎么也修改不了,加sudo也不行. 后来查询才得知系统默认开启了"系统集成保护" ...

  9. &lbrack;物理学与PDEs&rsqb;第5章习题7 各向同性材料时稳定性条件的等价条件

    在线性弹性时, 证明各向同性材料, 稳定性条件 (5. 27) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+\cfrac{2}{3}\mu>0.  \ee ...

  10. 自建mvc5项目里几个类图

    AccoutController.cs AccountViewModels.cs IdentityModel.cs