2 seconds
256 megabytes
standard input
standard output
A tree is an undirected connected graph without cycles.
Let's consider a rooted undirected tree with n vertices, numbered 1 through n. There are many ways to represent such a tree. One way is to create an array with n integers p1, p2, ..., pn, where pi denotes a parent of vertex i (here, for convenience a root is considered its own parent).
For this rooted tree the array p is [2, 3, 3, 2].
Given a sequence p1, p2, ..., pn, one is able to restore a tree:
- There must be exactly one index r that pr = r. A vertex r is a root of the tree.
- For all other n - 1 vertices i, there is an edge between vertex i and vertex pi.
A sequence p1, p2, ..., pn is called valid if the described procedure generates some (any) rooted tree. For example, for n = 3 sequences(1,2,2), (2,3,1) and (2,1,3) are not valid.
You are given a sequence a1, a2, ..., an, not necessarily valid. Your task is to change the minimum number of elements, in order to get a valid sequence. Print the minimum number of changes and an example of a valid sequence after that number of changes. If there are many valid sequences achievable in the minimum number of changes, print any of them.
The first line of the input contains an integer n (2 ≤ n ≤ 200 000) — the number of vertices in the tree.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n).
In the first line print the minimum number of elements to change, in order to get a valid sequence.
In the second line, print any valid sequence possible to get from (a1, a2, ..., an) in the minimum number of changes. If there are many such sequences, any of them will be accepted.
4
2 3 3 4
1
2 3 4 4
5
3 2 2 5 3
0
3 2 2 5 3
8
2 3 5 4 1 6 6 7
2
2 3 7 8 1 6 6 7
In the first sample, it's enough to change one element. In the provided output, a sequence represents a tree rooted in a vertex 4 (becausep4 = 4), which you can see on the left drawing below. One of other correct solutions would be a sequence 2 3 3 2, representing a tree rooted in vertex 3 (right drawing below). On both drawings, roots are painted red.
In the second sample, the given sequence is already valid.
题意:
给你n个顶点,n个数代表第i这个顶点连接的ai这个顶点,如果i=ai表示他没连向其他顶点,不过其他顶点可能连向他,然后问你至少改变多少个ai使得这n个顶点能变成一棵树
题解:
要最少的改变,我们分析一下,首先要成为一棵树,不能有孤立点,不能有环,所以我们只需要改变孤立点的连向和会使树变成环的点就行了,
我们这里用并查集维护连接的关系,任何孤立点都能当作树的顶点,如果有一个点会使其成为环,那么我们就暂时将这个点的当作这一棵树的顶点,
为什么是暂时呢?因为这一棵树有可能只是一棵小树,我们要合并全部的树,所以暂时当作这颗树的顶点,最后合并的时候就直接指向大树的顶点就行了,这样就能达到最小的改变,如果给的n个点形成的两棵子树,那么我们只需要任选一个树的顶点作为boss,然后改变另一棵树的顶点就能合并了。再总结一下,我们只改变了孤立点和会使其成为环的点然后合并子树的时候也只是改变了顶点的指向,这些都是必须要改变的,所以最后的答案肯定是最小的
#include<cstdio>
#define F(i,a,b) for(int i=a;i<=b;i++)
const int N=2E5+;
int a[N],fa[N]; int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);} int main(){
int n,boss=-,cnt=;
scanf("%d",&n);
F(i,,n)fa[i]=i;
F(i,,n){
scanf("%d",a+i);
if(a[i]==i)boss=i,cnt++;//任意的孤立点或者任意一个集合的顶点都能当最终的顶点
else{
int fx=find(i),fy=find(a[i]);
if(fx==fy){//说明这里存在环
cnt++,a[i]=i;
}else fa[fx]=fy;//将这两点连接
}
}
if(boss==-){
F(i,,n)if(fa[i]==i){boss=i;break;}
cnt++;
}
printf("%d\n",cnt-);//因为多记了一个树的顶点
F(i,,n){
if(a[i]==i)a[i]=boss;
printf("%d%c",a[i]," \n"[i==n]);
}
return ;
}
Codeforces Round #363 (Div. 2)D. Fix a Tree(并查集)的更多相关文章
-
Codeforces Round #363 (Div. 2) D. Fix a Tree —— 并查集
题目链接:http://codeforces.com/contest/699/problem/D D. Fix a Tree time limit per test 2 seconds memory ...
-
Codeforces Round #363 (Div. 2) 698B Fix a Tree
D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes A tree is an und ...
-
Codeforces Round #363 (Div. 1) B. Fix a Tree 树的拆环
题目链接:http://codeforces.com/problemset/problem/698/B题意:告诉你n个节点当前的父节点,修改最少的点的父节点使之变成一棵有根树.思路:拆环.题解:htt ...
-
Codeforces Round #181 (Div. 2) B. Coach 带权并查集
B. Coach 题目连接: http://www.codeforces.com/contest/300/problem/A Description A programming coach has n ...
-
Codeforces Round #345 (Div. 1) C. Table Compression dp+并查集
题目链接: http://codeforces.com/problemset/problem/650/C C. Table Compression time limit per test4 secon ...
-
Codeforces Round #346 (Div. 2) F. Polycarp and Hay 并查集 bfs
F. Polycarp and Hay 题目连接: http://www.codeforces.com/contest/659/problem/F Description The farmer Pol ...
-
Codeforces Round #375 (Div. 2) D. Lakes in Berland 并查集
http://codeforces.com/contest/723/problem/D 这题是只能把小河填了,题目那里有写,其实如果读懂题这题是挺简单的,预处理出每一块的大小,排好序,从小到大填就行了 ...
-
Codeforces Round #603 (Div. 2) D. Secret Passwords(并查集)
链接: https://codeforces.com/contest/1263/problem/D 题意: One unknown hacker wants to get the admin's pa ...
-
Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环
D. Dividing Kingdom II Long time ago, there was a great kingdom and it was being ruled by The Grea ...
随机推荐
-
pip 8 安装
1.首先安装setuptools 2.再安装pip http://blog.csdn.net/u013372487/article/details/51726002
-
【ASP.NET 基础】Page类和回调技术
Page 类有一个 IsPostBack 属性,这个属性用来指示当前页面是第一次加载还是响应了页面上某个控件的服务器事件导致回发而加载. 1.asp.net页面的声明周期 asp.net页面运行的时候 ...
-
Apple的App Analytics统计平台你必须知道的Q&;A整理与翻译
Apple的App Analytics统计平台你必须知道的Q&A整理与翻译 Apple最近在iTunesConnect里最新发布了App Analytics统计平台,提供了现有友盟统计平台和自 ...
-
uvalive 3218 Find the Border
题意:一条封闭折线将平面分成了若干个区域,按顺序给出折线各点的坐标,要求输出封闭折线的轮廓. 题解:用类似卷包裹的算法,先确定一个一定会被选中的点(x坐标最小,y坐标最小)作为起点,然后把可能是下一个 ...
-
怎样在thinkphp里面执行原生的sql语句
$Model = new Model(); $sql = "select * from `order`"; $voList = $Model->query($sql); 只是 ...
-
poj 1741 树的点分治(入门)
Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 18205 Accepted: 5951 Description ...
-
jar包版本介绍(beta,alpha,release),软件的版本介绍
α(Alpha) 此版本表示该软件仅仅是一个初步完成品,通常只在软件开发者内部交流,也有很少一部分发布给专业测试人员.一般而言,该版本软件的bug(漏洞)较多,普通用户最好不要安装.主要是开发者自己对 ...
-
easyui 功能介绍
最近使用easyui, 下面,我介绍下常用功能: //绑定Product总类型 $('#gdv_ProductParentType').datagrid({ url: '../api/BindData ...
-
Spring cloud info信息显示
父工程添加配置如下 <build> <finalName>microservicecloud</finalName> <resources> <r ...
-
Spring boot 配置嵌入式Servlet容器
SpringBoot默认使用Tomcat作为嵌入式的Servlet容器 1.修改和server有关的配置(ServerProperties[也是EmbeddedServletContainerCust ...