在上图形学课的时候,学习了扫描线填充算法。不过在完成实验的时候在真正理解了该算法,在此记录一下,如果有表达上的错误,欢迎指正!
扫描线填充算法通过在与图形相交的第(1,2)、(3,4)... 边之间划线不断不断填充图形。因此,在扫描时就需要确定什么时候与图形的某条边相交、划线的时候x的范围是多少以及划线时是从哪个交点画至另一个交点。
结构体如下所示:
为了节省存储的空间,边表项也使用链表结构,将图形中ymin值相同的边链接在同一个边表项后,这样在扫描的时候方便添加。
具体的流程如下:
一、初始化活动边表
1. 统计并初始化表项
2. 将每条边分别链接在表项后
二、 绘制与填充
1. 取出当前与扫描线相交的边
① 取出ymin 大于当前扫描线的y值的边
② 删除ymax 小于等于当前扫描线的边(①②过程可以排除掉与扫描线平行的边)
2. 将取出的边按照左右顺序排序(根据边的最低点的坐标与直线的斜率判断)
3. 划线并直接在原结构上修改边的x值(因为是在一个函数内,修改保存的值仅限于函数内,并不影响main函数中的值)
具体的代码如下所示,使用的库是EasyX(可以在http://www.easyx.cn/下载):
- #include "graphics.h"
- #include "stdio.h"
- #include "conio.h"
- #include <stdlib.h>
- #include <math.h>
- #include <cmath>
- #include <iostream>
- using namespace std;
- #define MAX_VOL 20
- //多边形的边的数据结构
- typedef struct Edge
- {
- int y_max, y_min; //该有向边的y坐标的最大值与最小值
- double x, deltax; //该有向边的x的最小值以及x的变化的量(1/斜率)
- struct Edge* next; //指向下一条边的指针
- }Edge;
- //活动边表表项
- typedef struct TableItem
- {
- int curr_y; //该表项的y坐标值 ymin
- Edge *firstNode; //该表项的首个节点,如果没有,NULL
- struct TableItem *next; //指向下一个活动边表表项的指针
- }TableItem;
- //活动边表结构体
- typedef struct Table
- {
- TableItem *itemHeader; //活动边表的表项header
- int item_count; //活动边表表项的个数
- }ET;
- class Point
- {
- private:
- int x1, x2, y1, y2;
- public:
- Point(int x1, int y1, int x2, int y2)
- {
- this->x1 = x1;
- this->x2 = x2;
- this->y1 = y1;
- this->y2 = y2;
- }
- //返回两个点之中的ymax
- int YMax()
- {
- return (y1 > y2 ? y1 : y2);
- }
- //返回ymin
- int YMin()
- {
- return (y1 < y2 ? y1 : y2);
- }
- //返回ymin 端点的x 值
- int x()
- {
- return (y1 < y2 ? x1 : x2);
- }
- //返回直线的斜率,按照传入的参数的顺序
- double KOfLine()
- {
- return ((y2 - y1)*1.0 / (x2 - x1));
- }
- };
- class Solution
- {
- public:
- //根据多边形初始化活动表
- //参数 T 活动边表
- //参数edges 用于初始化的边数组
- //参数 edge_num 用于初始化的边的个数
- void Init(ET &T, Edge *edges, int edge_num)
- {
- //初始化活动边表结构体
- T.item_count = 0;
- T.itemHeader = NULL;
- int ymins[20]; //存储ymin ,决定活动边表的个数以及表项的内容
- T.item_count = TableItemCount(edges, edge_num, ymins);
- T.itemHeader = (TableItem*)malloc(sizeof(TableItem));
- T.itemHeader->curr_y = ymins[0];
- T.itemHeader->firstNode = NULL;
- T.itemHeader->next = NULL;
- TableItem *p = T.itemHeader; //指向头结点
- for (int i = 1; i<T.item_count; ++i)
- {
- //依次创建活动边表的各个表项,并连接在一起
- TableItem *e = (TableItem*)malloc(sizeof(TableItem));
- e->curr_y = ymins[i];
- e->firstNode = NULL;
- e->next = NULL;
- p->next = e;
- p = e;
- }
- //按照用于初始化的边数组初始化活动边表
- p = T.itemHeader;
- for (int j = 0; j < edge_num; ++j) {
- this->AppendNode(T, edges[j].y_min, edges[j]);
- }
- //方法结束
- ////////测试区////////////
- //cout << "遍历表项。。。。。" << endl;
- //p = T.itemHeader;
- //while (p != NULL) {
- // cout << "当前表项y : " << p->curr_y << endl;
- // Edge *ele = p->firstNode;
- // while (ele != NULL) {
- // cout << "表项中的边: x = " << ele->x << " y_min = " << ele->y_min << " y_max = " << ele->y_max <<
- // "deltax = " << ele->deltax << endl;
- // ele = ele->next;
- // }
- // p = p->next;
- //}
- ////////测试删除结点////////
- //p = T.itemHeader;
- //int yMax = 0;
- //while (yMax < 24) {
- // p = T.itemHeader;
- // cout << "-------------------------------" << endl;
- // cout << "当前y max :" << yMax << endl;
- // this->DeleteNode(T, yMax);
- // while (p != NULL) {
- // cout << "当前表项y : " << p->curr_y << endl;
- // Edge *ele = p->firstNode;
- // while (ele != NULL) {
- // cout << "表项中的边: x = " << ele->x << " y_min = " << ele->y_min << " y_max = " << ele->y_max <<
- // "deltax = " << ele->deltax << endl;
- // ele = ele->next;
- // }
- // p = p->next;
- // }
- // yMax++;
- //}
- /////////////////////////
- }
- //用于根据边数组计算需要多少个表项
- //表项的个数取决于边的ymin的个数
- //返回值 ymin 数组
- //返回 item_num 表项的个数
- int TableItemCount(Edge *edges, int edge_num, int* ymins)
- {
- int count = 0;
- for (int i = 0; i<edge_num; ++i)
- {
- if (!isInArray(ymins, edges[i].y_min, count))
- {
- ymins[count++] = edges[i].y_min;
- }
- }
- //将ymin 升序排序
- for (int j = 0; j<count - 1; ++j)
- {
- for (int k = j + 1; k<count; ++k)
- {
- if (ymins[k] < ymins[j])
- {
- int tmp = ymins[k];
- ymins[k] = ymins[j];
- ymins[j] = tmp;
- }
- }
- }
- return count;
- }
- //判断一个整数是否在整数数组中
- bool isInArray(int *array, int e, int array_length)
- {
- for (int i = 0; i<array_length; ++i)
- {
- if (array[i] == e)
- {
- return true;
- }
- }
- return false;
- }
- //传入edges数组,初始化,返回Edge 结构体数组
- //因为需要是封闭图形,所以,在边数组中,最后的点的坐标设为起始点的坐标,传入的edge_num 不变
- Edge* InitEdges(int *edges, int edge_num)
- {
- Edge *newEdges = (Edge*)malloc(sizeof(Edge)*edge_num);
- int j = 0;
- for (int i = 0; i<edge_num; ++i)
- {
- Point point(edges[2 * i], edges[2 * i + 1], edges[2 * (i + 1)], edges[2 * (i + 1) + 1]);
- Edge *newEdge = (Edge*)malloc(sizeof(Edge));
- newEdge->x = (double)point.x();
- newEdge->y_max = point.YMax();
- newEdge->y_min = point.YMin();
- newEdge->deltax = 1.0 / point.KOfLine(); // 斜率分之一
- newEdge->next = NULL;
- newEdges[j++] = *(newEdge);
- }
- return newEdges;
- }
- //删除所有的小于ymax 的节点
- //参数 curr_ymax 当前扫描线的y值
- void DeleteNode(ET &T, int curr_ymax)
- {
- TableItem *p = T.itemHeader; //指向表项的指针
- while (p != NULL) {
- Edge *item = p->firstNode; //指向表项的邻接链表的指针
- Edge *itempre = p->firstNode; //指向前一个边结点的指针
- while (item != NULL) {
- if (item->y_max <= curr_ymax) { //删除该结点
- T.item_count--; //当前活动边表中的边的个数-1
- //判断该结点是否是该链表的头结点
- if (item == p->firstNode) {
- p->firstNode = (Edge*)malloc(sizeof(Edge));
- p->firstNode = item->next;
- free(item); //释放该结点
- item = p->firstNode; //重新指向firstnode结点
- itempre = p->firstNode;
- }
- else {
- itempre->next = item->next; //修改前一个结点的next的值
- free(item); //删除该指针
- item = itempre->next; //继续向后遍历
- }
- }//if (item->y_max < curr_ymax)
- else {
- itempre = item;
- item = item->next;
- }
- }//while (item != NULL)
- p = p->next;
- }//while (p != NULL)
- }
- //将指定y值的节点添加到该表项, 该方法插入的顺序取决于调用该方法传入参数的顺序
- //该方法将新节点插入到对应表项的邻接链表的末尾
- void AppendNode(ET &T, int place_y, Edge &e)
- {
- ////////测试区//////////
- //cout << "In Append , place_y = " << place_y << " e.ymin = " << e.y_min << endl;
- //cout << "item count" << T.item_count << endl;
- ///////////////////////
- TableItem *p = T.itemHeader; //指向活动边表的头结点
- //将边e插入到对应的表项
- //之后在该表项中按照x的大小确定插入的位置
- for (int i = 0; i < T.item_count; ++i) {
- if (p->curr_y == e.y_min)
- break;
- p = p->next;
- }
- //将边插入到该表项的邻接链表中
- Edge *egp = p->firstNode; //egp 指向该表项的首个邻接节点
- if (egp == NULL) { //如果该表项还没有节点,直接插入
- egp = (Edge*)malloc(sizeof(Edge));
- *(egp) = e;
- egp->next = NULL;
- p->firstNode = egp;
- }
- else {
- Edge *pre = egp;
- while (egp != NULL) {
- pre = egp;
- egp = egp->next;
- }
- Edge *newedge = (Edge*)malloc(sizeof(Edge));
- *(newedge) = e;
- pre->next = newedge;
- newedge->next = NULL;
- }
- }
- //绘图的方法
- void Draw(ET T) {
- //首先取出ymin 值小于当前扫描线y 的边
- //按照顺序配对
- int curr_y = 0, curr_edge_num = 0, curr_gy = graphy(curr_y); //图形坐标的扫描线的y坐标
- Edge *currEdges = (Edge*)malloc(sizeof(Edge) * 20); //用于存放指针的数组
- //将每条边的记录的x 化为图形上的坐标
- TableItem *p = T.itemHeader;
- while (p != NULL) {
- Edge *q = p->firstNode;
- while (q != NULL) {
- q->x = graphx(q->x);
- q = q->next;
- }
- p = p->next;
- }
- for (; curr_y < 30; curr_gy--, curr_y = realy(curr_gy)) {
- this->DeleteNode(T, curr_y); //删除当前扫描过的边(ymax 小于 curr_y)
- currEdges = this->GetCurrEdges(T, curr_y, curr_edge_num); //获取当前与扫描线相交的边
- //对获取到的边进行排序、配对
- for (int i = 0; i < curr_edge_num - 1; ++i) {
- for (int j = i + 1; j < curr_edge_num; ++j) {
- if (this->IsRightTo(currEdges[i], currEdges[j])) {
- Edge tmp = currEdges[i];
- currEdges[i] = currEdges[j];
- currEdges[j] = tmp;
- }
- }
- }
- ////
- // getchar();
- // cout << "------------------------------" << endl;
- setcolor(BLUE);
- for (int j = 0; j < curr_edge_num / 2; ++j) {
- ///
- // cout << "line :" << (int)currEdges[2 * j].x << " , " << curr_y << "----->" << (int)currEdges[2 * j + 1].x << " , " << curr_y <<
- // " edge_num = " << curr_edge_num << endl;
- line((int)currEdges[2 * j].x, curr_gy, (int)currEdges[2 * j + 1].x, curr_gy);
- Edge *curr_edge1 = this->GetThisEdge(T, currEdges[2 * j].x, currEdges[2 * j].y_min,
- currEdges[2 * j].y_max); //获取当前边的指针,修改x值,保存修改
- curr_edge1->x += curr_edge1->deltax;
- Edge *curr_edge2 = this->GetThisEdge(T, currEdges[2 * j + 1].x, currEdges[2 * j + 1].y_min,
- currEdges[2 * j + 1].y_max);
- curr_edge2->x += curr_edge2->deltax;
- //line((int)currEdges[2 * j].x, curr_gy, (int)currEdges[2 * j + 1].x, curr_gy); //在两条直线之间划线
- //currEdges[2 * j].x += currEdges[2 * j].deltax;
- //currEdges[2 * j + 1].x += currEdges[2 * j + 1].deltax; //更新x 的坐标值
- }
- //////////测试模拟输出划线///////////////
- /*cout << "------------------------------------------" << endl;
- cout << "curr_y = " << curr_y << endl;
- cout << "当前扫描的边的个数 = " << curr_edge_num << endl;
- for (int i = 0; i < curr_edge_num / 2; ++i) {
- cout << "draw line bwtwen :" << endl;
- cout << "直线1 x = " << currEdges[2 * i].x << " ymin = " << currEdges[2 * i].y_min <<
- " ymax = " << currEdges[2 * i].y_max << endl;
- cout << "直线2 x = " << currEdges[2 * i + 1].x << " ymin = " << currEdges[2 * i + 1].y_min <<
- " ymax = " << currEdges[2 * i + 1].y_max << endl;
- }*/
- ////////////////////////////////////
- //在1,2 3,4 ... 边之间划线
- //TODO 坐标转换以及划线
- }
- ///////测试区/////////////////
- //cout << "-------------------------------------" << endl;
- //cout << "当前取出的边。。。。。。。。。。" << endl;
- //cout << "curr_edge_num = " << curr_edge_num << endl;
- //for (int i = 0; i < curr_edge_num; ++i) {
- // cout << "x = " << currEdges[i].x << " y_min = " << currEdges[i].y_min << " y_max = " << currEdges[i].y_max << endl;
- //}
- ////////////////////////////////
- }
- //返回某个边的指针
- //可通过此指针修改原结构体中边的x的值
- Edge* GetThisEdge(ET T, double x, int y_min, int y_max) {
- TableItem *p = T.itemHeader;
- while (p != NULL) {
- Edge *q = p->firstNode;
- while (q != NULL) {
- if ((q->x == x) && (q->y_max == y_max) && (q->y_min == y_min)) {
- return q;
- }
- q = q->next;
- }
- p = p->next;
- }
- return NULL;
- }
- //用于坐标转换的函数
- double graphx(double x) {
- return x * 10 + 100;
- }
- double realx(double gx) {
- return (gx - 100)*1.0 / 10;
- }
- int graphy(int y) {
- return 400 - y * 10;
- }
- int realy(int gy) {
- return (400 - gy) / 10;
- }
- //绘制坐标系
- void DrawCoordinate(int edges[], int edge_num) {
- line(100, 100, 100, 400);
- line(100, 400, 400, 400);
- outtextxy(85, 95, "y↑");
- outtextxy(400, 393, "→x");
- for (int i = 0; i < 30; ++i) {
- if (i % 2 != 0)
- continue;
- //TODO 字符转换
- outtextxy(i * 10 + 100, 390, "|");
- char *text = (char*)malloc(sizeof(char) * 10);
- itoa(i,text,10);
- outtextxy(i * 10 + 100, 410, text);
- free(text);
- }
- for (int j = 0; j < 30; ++j) {
- if (j % 2 != 0)
- continue;
- outtextxy(100, 400 - j * 10, "_");
- char *str = (char*)malloc(sizeof(char)*10);
- itoa(j,str,10);
- outtextxy(100, 400 - j * 10,str);
- free(str);
- }
- //绘制原多边形
- for (int k = 0; k < edge_num; ++k) {
- setcolor(YELLOW);
- int x1 = 0, x2 = 0, y1 = 0, y2 = 0;
- x1 = edges[2 * k] * 10 + 100;
- y1 = 400 - edges[2 * k + 1] * 10;
- x2 = edges[2 * (k + 1)] * 10 + 100;
- y2 = 400 - edges[2 * (k + 1) + 1] * 10;
- line(x1, y1, x2, y2);
- }
- }
- //获取当前的涉及的扫描线的边
- //即取出当前ymin 小于curr_y的边
- //通过参数返回取出的边的个数
- Edge* GetCurrEdges(ET T, int curr_y, int &edge_num) {
- Edge *currEdges = (Edge*)malloc(sizeof(Edge) * 20); //分配最大容量
- int i = 0;
- TableItem *p = T.itemHeader;
- while (p != NULL) {
- Edge *q = p->firstNode;
- while (q != NULL) {
- if (q->y_min <= curr_y) { //等于号很重要,否则会在图形中出现空白区
- currEdges[i++] = *q; //将当前边的值取出(不改变原活动表)
- }
- q = q->next;
- }
- p = p->next;
- }
- edge_num = i; //保存取出的边的个数
- return currEdges;
- }
- //判断edge1 是否在edge2 的右边的方法
- bool IsRightTo(Edge edge1, Edge edge2) {
- if (edge1.x > edge2.x) //如果edge1最低点的x坐标小于edge2的最低点的x的坐标,则edge1在edge2的右边
- return true;
- else {
- if (edge1.x < edge2.x)
- return false;
- double x_max1 = (edge1.y_max - (edge1.y_min - 1.0 / edge1.deltax*edge1.x))*edge1.deltax;
- double x_max2 = (edge2.y_max - (edge2.y_min - 1.0 / edge2.deltax*edge2.x))*edge2.deltax;
- if (x_max1 > x_max2)
- return true;
- }
- return false;
- }
- };
- int main()
- {
- //TODO 测试活动边表初始化
- Solution solution;
- int edges[] = { 4,18,14,14,26,22,26,10,14,2,4,6,4,18 };
- Edge* newEdges = solution.InitEdges(edges, 6);
- ET T;
- solution.Init(T, newEdges, 6); //初始化活动边表
- initgraph(800, 800, SHOWCONSOLE);
- solution.DrawCoordinate(edges, 6);
- solution.Draw(T);
- getchar();
- closegraph();
- return 0;
- }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
原文链接:https://blog.csdn.net/qq_36573282/article/details/78633319