POJ - 1836 Alignment (动态规划)

时间:2024-01-13 21:49:26

https://vjudge.net/problem/POJ-1836

题意

求最少删除的数,使序列中任意一个位置的数的某一边都是递减的。

分析

任意一个位置的数的某一边都是递减的,就是说对于数h[i],有h[1] ~ h[i]严格单增,或h[i] ~ h[n]严格单减。一开始读错题意,以为使总体递增或递减,使劲wa。。。求两个方向的LIS,用n^2解法即可。

#include<iostream>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<cstdio>
#include<algorithm>
#include<map>
#include<set>
#define rep(i,e) for(int i=0;i<(e);i++)
#define rep1(i,e) for(int i=1;i<=(e);i++)
#define repx(i,x,e) for(int i=(x);i<=(e);i++)
#define X first
#define Y second
#define PB push_back
#define MP make_pair
#define mset(var,val) memset(var,val,sizeof(var))
#define scd(a) scanf("%d",&a)
#define scdd(a,b) scanf("%d%d",&a,&b)
#define scddd(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define pd(a) printf("%d\n",a)
#define scl(a) scanf("%lld",&a)
#define scll(a,b) scanf("%lld%lld",&a,&b)
#define sclll(a,b,c) scanf("%lld%lld%lld",&a,&b,&c)
#define IOS ios::sync_with_stdio(false);cin.tie(0) using namespace std;
typedef long long ll;
template <class T>
void test(T a){cout<<a<<endl;}
template <class T,class T2>
void test(T a,T2 b){cout<<a<<" "<<b<<endl;}
template <class T,class T2,class T3>
void test(T a,T2 b,T3 c){cout<<a<<" "<<b<<" "<<c<<endl;}
template <class T>
inline bool scan_d(T &ret){
char c;int sgn;
if(c=getchar(),c==EOF) return ;
while(c!='-'&&(c<''||c>'')) c=getchar();
sgn=(c=='-')?-:;
ret=(c=='-')?:(c-'');
while(c=getchar(),c>=''&&c<='') ret = ret*+(c-'');
ret*=sgn;
return ;
}
//const int N = 1e6+10;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const ll mod = ;
int T; void testcase(){
printf("Case %d:",++T);
} const int MAXN = 5e5+ ;
const int MAXM = ;
const double eps = 1e-;
const double PI = acos(-1.0); int dp1[],dp2[];
double h[];
int main() {
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
int n;
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%lf",&h[i]); for(int i=;i<=n;i++){
dp1[i]=;
for(int j=;j<i;j++){
if(h[i]>h[j]) dp1[i]=max(dp1[i],dp1[j]+);
}
}
for(int i=n;i>=;i--){
dp2[i]=;
for(int j=n;j>i;j--){
if(h[i]>h[j]) dp2[i]=max(dp2[i],dp2[j]+);
}
}
int ans=;
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
ans=max(ans,dp1[i]+dp2[j]);
}
}
cout<<n-ans;
return ;
}