棋盘分割
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 11457 | Accepted: 4032 |
Description
将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)
原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小。
均方差
,其中平均值
,x
i为第i块矩形棋盘的总分。
请编程对给出的棋盘及n,求出O'的最小值。
Input
第1行为一个整数n(1 < n < 15)。
第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。
第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。
Output
仅一个数,为O'(四舍五入精确到小数点后三位)。
Sample Input
3
1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 3
Sample Output
1.633
Source Code Problem: 1191
Memory: 596K Time: 0MS
Language: C++ Result: Accepted
Source Code
#include <iostream>
#include <cmath>
using namespace std;
const int maxint = 2000000000;
# define N 8
double ans;
int map[ N+1 ][ N+1 ], n;
int sum[ N+1 ][ N+1 ];
int f[16][ N+1 ][ N+1 ][ N+1 ][ N+1 ];
void init(){
for (int i = 1; i <= N; i ++)
for (int j = 1; j <= N; j++)
scanf("%d", &map[i][j]);
}
void output(){ printf("%.3lf\n", ans); }
int cal_sum(int x1, int y1, int x2, int y2){
int tmp = sum[x2][y2]+sum[x1-1][y1-1] - sum[x1-1][y2]-sum[x2][y1-1];
return tmp*tmp;
}
void dp(){
memset(sum, 0, sizeof(sum));
int tmp;
sum[0][0] = 0;
for (int i = 1; i <= N; i ++)
for (int j = 1; j <= N; j ++)
sum[i][j] = sum[i][j-1]+sum[i-1][j] - sum[i-1][j-1] + map[i][j];
memset(f, 0, sizeof(f));
for(int x1 = 1; x1 <= N; x1 ++)
for (int y1 = 1; y1 <= N; y1 ++)
for (int x2 = x1; x2 <= N; x2 ++)
for (int y2 = y1; y2 <= N; y2 ++)
f[1][x1][y1][x2][y2] = cal_sum(x1, y1, x2, y2);
for (int k = 2; k <= n; k ++)
for (int x1 = 1; x1 <= N; x1 ++)
for (int y1 = 1; y1 <= N; y1 ++)
for (int x2 = x1; x2 <= N; x2 ++)
for (int y2 = y1; y2 <= N; y2 ++){
f[k][x1][y1][x2][y2] = maxint;
for (int x = x1; x < x2; x ++){
tmp = min(f[k-1][x1][y1][x][y2] + cal_sum(x+1, y1, x2, y2),
f[k-1][x+1][y1][x2][y2] + cal_sum(x1, y1, x, y2));
if (f[k][x1][y1][x2][y2] > tmp) f[k][x1][y1][x2][y2] = tmp;
}
for (int y = y1; y < y2; y ++){
tmp = min( f[k-1][x1][y1][x2][y] + cal_sum(x1, y+1, x2, y2),
f[k-1][x1][y+1][x2][y2] + cal_sum(x1, y1, x2, y) );
if (f[k][x1][y1][x2][y2] > tmp) f[k][x1][y1][x2][y2] = tmp;
}
}
ans = sqrt( f[n][1][1][N][N]/(double)n - sum[N][N]*sum[N][N]/(double)(n*n));
}
int main()
{
while (scanf("%d", &n) != EOF){
init();
dp();
output();
}
return 0;
}