HDU 2017女生赛04 (变形最短路)

时间:2022-12-31 15:52:17

Deleting Edges

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 263    Accepted Submission(s): 85


Problem Description Little Q is crazy about graph theory, and now he creates a game about graphs and trees.
There is a bi-directional graph with  n  nodes, labeled from 0 to  n1 . Every edge has its length, which is a positive integer ranged from 1 to 9.
Now, Little Q wants to delete some edges (or delete nothing) in the graph to get a new graph, which satisfies the following requirements:
(1) The new graph is a tree with  n1  edges.
(2) For every vertice  v(0<v<n) , the distance between 0 and  v  on the tree is equal to the length of shortest path from 0 to  v  in the original graph.
Little Q wonders the number of ways to delete edges to get such a satisfied graph. If there exists an edge between two nodes  i  and  j , while in another graph there isn't such edge, then we regard the two graphs different.
Since the answer may be very large, please print the answer modulo  109+7 .
 
Input The input contains several test cases, no more than 10 test cases.
In each test case, the first line contains an integer  n(1n50) , denoting the number of nodes in the graph.
In the following  n  lines, every line contains a string with  n  characters. These strings describes the adjacency matrix of the graph. Suppose the  j -th number of the  i -th line is  c(0c9) , if  c  is a positive integer, there is an edge between  i  and  j  with length of  c , if  c=0 , then there isn't any edge between  i  and  j .
The input data ensure that the  i -th number of the  i -th line is always 0, and the  j -th number of the  i -th line is always equal to the  i -th number of the  j -th line.
 
Output For each test case, print a single line containing a single integer, denoting the answer modulo  109+7 .  
Sample Input
2
01
10
4
0123
1012
2101
3210
 
Sample Output
1
6
 
Source 2017中国大学生程序设计竞赛 - 女生专场  

题意:

n个点,n*2-n条边,删除掉只剩下n-1条边,满住剩下的每个点在原图中都是最短路的存在。

分析:

dij队列优化需要vis,可以避免重复入队的情况,但是不加vis也不会无尽循环下去。



HDU 2017女生赛04 (变形最短路)

来自某个博客其他人的解法,其实也不需要跑完全图。

HDU 2017女生赛04 (变形最短路)


说入度乘积我更倾向于说成每个点走法的乘积。(5.15重温这句话发现这句话还是有问题的,到三点的还有一种画法)

dij算法就是求原点到各个点的最短路,也很贴合这道题的性质。那么不同走法之间会有影响吗?只有两个独立事件同时发生没有影响才能相乘。(有问题)

结果是没有影响。原题中说只要存在任意一条不同的边就是不同的图。

HDU 2017女生赛04 (变形最短路)

dij最短路的原理就是通过不同路来松弛。每种走法的组合一定可以存在一条异边。第三个点也是建立在前面点基础上通过扩展而来。

因为n为50,所以随便哪个最短路算法都能过吧:

正插邻接表加队列的确比反插好写多了。。。

#include <iostream>
#include <cstdio>
#include <queue>
#include <vector>
#include <bits/stdc++.h>
#define mod 1000000007
using namespace std;
typedef long long ll;
const int maxn = 100+10;
const int INF = 0x3f3f3f3f;
char ch[60][60];
int cnt[maxn];
struct node{
int x,d;
node(){}
node(int a,int b){x=a;d=b;}
bool operator < (const node & a) const
{
return d > a.d;
}
};
vector<node> eg[maxn];
int dis[maxn];
void Dijkstra(int s)
{


dis[s]=0;
//用优先队列优化
priority_queue<node> q;
q.push(node(s,dis[s]));
while(!q.empty())
{
node x=q.top();q.pop();
//最后一个点就可以跳出了
if(x.x==n-1)
break;
for(int i=0;i<eg[x.x].size();i++)
{
node y=eg[x.x][i];
if(dis[y.x]>x.d+y.d)
{
cnt[y.x] = 1;
dis[y.x]=x.d+y.d;
q.push(node(y.x,dis[y.x]));
}
else if(dis[y.x]==x.d+y.d) {
cnt[y.x]++;
}
}
}
}
int main()
{
// freopen("in.txt","r",stdin);
int n;
while(~scanf("%d",&n))
{
for(int i=0;i<=n;i++)
dis[i]=INF;
memset(cnt,0,sizeof(cnt));
cnt[0]=1;
for(int i=0;i<=n;i++) eg[i].clear();

for(int i=0;i<n;i++)
{
scanf("%s",ch[i]);
for(int j=0;j<n;j++)
{
if(ch[i][j]!='0')
eg[i].push_back(node(j,ch[i][j]-'0'));
}
}

Dijkstra(0);
ll ans = 1LL;
for(int i = 0; i < n; i++) {
ans *= cnt[i];
ans %= mod;
}
printf("%d\n",ans);
}
return 0;
}

一开始超时的,不知道在哪里:

反正以后就用vector写了。。。。

#include <cstdio>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <cstring>
#include <utility>
#include <string>
#include <iostream>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <stack>


typedef long long ll;
using namespace std;
const int maxn = 60+10;
const int INF = 0x3f3f3f3f;
//int mp[maxn][maxn];
int first[maxn];
int cnt[maxn];
int num,dis[100];
char ch[60][60];
int vis[60];

#define mod 1000000007

struct Node {
int id;
int val;
}node;

struct Edge {
int id;//以此点为出边找边
int val;
int next;
}e[maxn];

void add(int u,int v,int d) {
//num边的编号
e[num].id = v;
e[num].val = d;
e[num].next = first[u];
first[u] = num;
num++;
}

priority_queue<Node> q;

bool operator < (Node a,Node b) {
return a.val > b.val;
}

int main() {
// freopen("in.txt","r",stdin);
int n,m;
while(~scanf("%d",&n)) {
memset(first,-1,sizeof(first));
memset(cnt,0,sizeof(cnt));
while(!q.empty()) q.pop();

for(int i=0;i<n;i++)
{
scanf("%s",ch[i]);
for(int j=0;j<n;j++)
{
if(ch[i][j]!='0')
add(i,j,ch[i][j]-'0');
}
}
for(int i = 1; i <= n; i++) {
dis[i] = INF;
}
Node cur;
dis[0] = 0;
node.id = 0;
node.val = 0;
q.push(node);
cnt[0] = 1;
while(!q.empty()) {
// if(cur.id == End){
// break;
// }
cur = q.top();
q.pop();
//i为边的编号
for(int i = first[cur.id]; i != -1; i = e[i].next) {
if(dis[e[i].id] > e[i].val+cur.val) {
cnt[e[i].id] = 1;
dis[e[i].id] = e[i].val+cur.val;
node.id = e[i].id;
node.val = dis[e[i].id];
q.push(node);
}
else if(dis[e[i].id] == e[i].val+cur.val)
cnt[e[i].id]++;
}
}
ll ans = 1LL;
for(int i = 0; i < n; i++) {
ans *= cnt[i];
ans %= mod;
}
// for(int i = 0; i <= n; i++) {
// printf("初始点到%d点的距离为%d\n",i,dis[i]);
// }
printf("%d\n",ans);
}
return 0;
}