[机器学习Lesson3] 梯度下降算法

时间:2022-12-28 14:29:38

1. Gradient Descent(梯度下降)

梯度下降算法是很常用的算法,可以将代价函数J最小化。它不仅被用在线性回归上,也被广泛应用于机器学习领域中的众多领域。

1.1 线性回归问题应用

我们有一个函数J(θ0,θ1),要使其最小化minJ(θ0,θ01):

[机器学习Lesson3] 梯度下降算法

Outline

  • 对θ0,θ1开始进行一些猜测

    通常将初θ0,θ1初始化为0
  • 在梯度算法中,要做的就是不停的一点点改变θ0和θ1试图通过这种改变使得J(θ0,θ1)变小,直到找到J的最小值或者局部最小值。

1.2 梯度算法工作原理

[机器学习Lesson3] 梯度下降算法

现在我们把这个图像想象为一座山,想像类似这样的景色 :公园中有两座山,想象一下你正站立在山的这一点上 站立在你想象的公园这座红色山上。在梯度下降算法中,我们要做的就是旋转360度,看看我们的周围,并问自己,我要在某个方向上,用小碎步尽快下山。如果我想要下山。如果我想尽快走下山,这些小碎步需要朝什么方向? 如果我们站在山坡上的这一点,你看一下周围,你会发现最佳的下山方向,大约是那个方向。

现在你在山上的新起点上 你再看看周围 然后再一次想想 我应该从什么方向迈着小碎步下山? 然后你按照自己的判断又迈出一步 往那个方向走了一步 然后重复上面的步骤。从这个新的点,你环顾四周并决定从什么方向将会最快下山。然后又迈进了一小步,并依此类推,直到你接近这里,直到局部最低点的位置。

[机器学习Lesson3] 梯度下降算法

现在想象一下,我们在刚才的右边一些的位置,对梯度下降进行初始化。想象我们在右边高一些的这个点。开始使用梯度下降。如果你重复上述步骤,停留在该点,并环顾四周,往下降最快的方向迈出一小步,然后环顾四周又迈出一步,然后如此往复。如果你从右边不远处开始梯度下降算法将会带你来到这个右边的第二个局部最优处。 如果从刚才的第一个点出发,你会得到这个局部最优解 但如果你的起始点偏移了一些,起始点的位置略有不同 你会得到一个非常不同的局部最优解。这就是梯度下降算法的一个特点。

1.3 梯度下降算法定义。

[机器学习Lesson3] 梯度下降算法

  • :=:赋值符号(Assignment).
  • α:这里的α是一个数字,被称为学习速率(learning rate)。在梯度下降算法中,它控制了我们下山时会迈出多大的步子。
  • 微分项。

在梯度下降中,我们要更新θ0和θ1。当 j=0 和 j=1 时 会产生更新。所以你将更新J、θ0还有θ1。实现梯度下降算法的微妙之处是,在这个表达式中,如果你要更新这个等式,你需要同时更新 θ0和θ1。

[机器学习Lesson3] 梯度下降算法

θ0和θ1需要同步更新,右侧是非同步更新,错误。

1.4 梯度下降和代价函数

梯度下降是很常用的算法,它不仅被用在线性回归上 和线性回归模型还有平方误差代价函数。

当具体应用到线性回归的情况下,可以推导出一种新形式的梯度下降法方程:

[机器学习Lesson3] 梯度下降算法

  • m:训练集的大小
  • θ0与θ1同步改变
  • xi和yi:给定的训练集的值(数据)。

我们已经分离出两例θj:θ0和θ1为独立的方程;在θ1中,在推导最后乘以Xi。以下是推导∂/∂θjJ(θ)的一个例子:

[机器学习Lesson3] 梯度下降算法

这一切的关键是,如果我们从猜测我们的假设开始,然后反复应用这些梯度下降方程,我们的假设将变得越来越精确。

因此,这只是原始成本函数J的梯度下降。这个方法是在每个步骤的每个训练集中的每一个例子,被称为批量梯度下降。注意,虽然梯度下降一般容易受到局部极小值的影响,但我们在线性回归中所提出的优化问题只有一个全局,没有其他局部最优解,因此梯度下降总是收敛(假定学习率α不是太大)到全局最小值。实际上,j是凸二次函数。这里是一个梯度下降的例子,它是为了最小化二次函数而运行的。

[机器学习Lesson3] 梯度下降算法

上面所示的椭圆是二次函数的轮廓图。也表明是通过梯度下降的轨迹,它被初始化为(48,30)。X在图(连接的直线)的标志,θ梯度穿过它收敛到最小的连续值。


本文资料部分来源于吴恩达 (Andrew Ng) 博士的斯坦福大学机器学习公开课视频教程。

[1]网易云课堂机器学习课程:

http://open.163.com/special/opencourse/machinelearning.html

[2]coursera课程:

https://www.coursera.org/learn/machine-learning/

[机器学习Lesson3] 梯度下降算法的更多相关文章

  1. ng机器学习视频笔记(二) ——梯度下降算法解释以及求解θ

    ng机器学习视频笔记(二) --梯度下降算法解释以及求解θ (转载请附上本文链接--linhxx)   一.解释梯度算法 梯度算法公式以及简化的代价函数图,如上图所示. 1)偏导数 由上图可知,在a点 ...

  2. 机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)

    本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有 ...

  3. 机器学习基础——梯度下降法(Gradient Descent)

    机器学习基础--梯度下降法(Gradient Descent) 看了coursea的机器学习课,知道了梯度下降法.一开始只是对其做了下简单的了解.随着内容的深入,发现梯度下降法在很多算法中都用的到,除 ...

  4. 梯度下降算法的一点认识(Ng第一课)

    昨天开始看Ng教授的机器学习课,发现果然是不错的课程,一口气看到第二课. 第一课 没有什么新知识,就是机器学习的概况吧. 第二课 出现了一些听不太懂的概念.其实这堂课主要就讲了一个算法,梯度下降算法. ...

  5. Logistic回归Cost函数和J(θ)的推导(二)----梯度下降算法求解最小值

    前言 在上一篇随笔里,我们讲了Logistic回归cost函数的推导过程.接下来的算法求解使用如下的cost函数形式: 简单回顾一下几个变量的含义: 表1 cost函数解释 x(i) 每个样本数据点在 ...

  6. 梯度下降算法对比(批量下降/随机下降/mini-batch)

    大规模机器学习: 线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本) 批量梯度下降算法(Batch gradient descent): 每计算一次梯度 ...

  7. p1 批梯度下降算法

    (蓝色字体:批注:绿色背景:需要注意的地方:橙色背景是问题) 一,机器学习分类 二,梯度下降算法:2.1模型   2.2代价函数   2.3 梯度下降算法 一,机器学习分类 无监督学习和监督学习 无监 ...

  8. 【转】梯度下降算法以及其Python实现

    一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系?   为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...

  9. 梯度下降算法以及其Python实现

    一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系?   为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...

随机推荐

  1. TypeScript Function(函数)

    在JavaScript中,函数是构成任何应用程序的基础块.通过函数,你得以实现建立抽象层.模仿类.信息隐藏和模块化.在TypeScript中,虽然已经存在类和模块化,但是函数依旧在如何去"处 ...

  2. svn版本搭建

    安装步骤如下: 1.yum install subversion   2.输入rpm -ql subversion查看安装位置,如下图:   我们知道svn在bin目录下生成了几个二进制文件. 输入 ...

  3. VS2015环境下Crystal Reports(水晶报表)的安装使用

    1.首先下载Crystal Reports13对于Visual Studio 2015支持的2个文件. CRforVS_13_0_17 CRforVS_redist_install_64bit_13_ ...

  4. [转]利用excel进行线性规划求解

                           利用线性回归方法求解生产计划 方法一: 1.建立数学模型: 设变量:设生产拉盖式书桌x台,普通式书桌y台,可得最大利润 ‚确定目标函数及约束条件 目标函 ...

  5. 猴子选大王的c#实现

    原文地址:猴子选大王的c#实现作者:余文 今天被问到了猴子选大王的意思,题目大意就是说有n只猴子围坐成一个圈,按顺时针方向从1到n编号.然后从1号猴子开始沿顺时针方向从1开始报数,报到m的猴子出局,再 ...

  6. Wshshell 脚本简单学习

    WshShell 的简单语法 学习 同事给了一个脚本自动执行  部署命令 感觉挺好的 , 年前一直说要学习一下 但是一直没有学习(自己太懒了) 这次简单总结一下. 创建对象: Set WshShell ...

  7. Swift5 语言指南(二十四) 泛型

    通用代码使您能够根据您定义的要求编写可以使用任何类型的灵活,可重用的函数和类型.您可以编写避免重复的代码,并以清晰,抽象的方式表达其意图. 泛型是Swift最强大的功能之一,Swift标准库的大部分内 ...

  8. SpringCloud 学习(二)-1 :服务注册与发现Eureka扩展

    上一篇介绍了Eureka Server的搭建跟配置.Eureka Client的搭建跟配置.服务间通过服务名调用等,还有几个实际实验中遇到的问题及处理方案,本篇来玩一下Eureka的其他配置. 上一篇 ...

  9. Combining HTML5 Web Applications with OpenCV

    The Web Dev Zone is brought to you by Stormpath—offering a pre-built Identity API for developers. Ea ...

  10. [AGC012E]Camel and Oases

    题意:有$n$个数轴上的绿洲,给定它们的坐标,有一只骆驼想要访问所有绿洲,当它的驼峰容量为$V$时,它可以走到和当前绿洲距离$\leq V$的绿洲,并可以继续走,它也可以用一次跳跃到达任意一个绿洲,只 ...