在研究java多线程的时候,了解到需要对java虚拟机有个了解,参考了《java虚拟机规范》以及《深入理解java虚拟机》,因为时间有限,仅仅大致了解了一下虚拟机的堆,虚拟机栈,本地方法栈等基础知识,直接看《深入理解java虚拟机》对于高效并发的知识,确实通俗易懂,对于多线程开发有很大的帮助,而虚拟机到底是怎么实现的,对于中级程序员不需要了解很多,仅仅知道注意点就可以了,因此我将书中介绍不错的复制了下。到高级程序员才会对java虚拟机规范有深刻的了解,待到有一定的时间,我也会系统的去看一遍。
并发处理的广泛应用是使得Amdahl定律代替摩尔定律[注释]成为计算机性能发展源动力的根本原因,也是人类“压榨”计算机运算能力的最有力武器。
java内存模型里的主内存与工作内存,Java内存模型规定了所有的变量都存储在主内存(Main Memory)中(此处的主内存与介绍物理硬件时的主内存名字一样,两者也可以互相类比,但此处仅是虚拟机内存的一部分)。每条线程还有自己的工作内存(Working Memory,可与前面讲的处理器高速缓存类比),线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝[注释],线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行,而不能直接读写主内存中的变量[注释]。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成。
一条Java线程操作自己工作内存的数据,与其他线程的数据独立开来,通过save,load操作与主内存打交道。
对于volatile型变量的特殊规则
volatile变量在各个线程的工作内存中不存在一致性问题(在各个线程的工作内存中,volatile变量也可以存在不一致的情况,但由于每次使用之前都要先刷新,执行引擎看不到不一致的情况,因此可以认为不存在一致性问题),但是Java里面的运算并非原子操作,导致volatile变量的运算在并发下一样是不安全的.
public class VolatileTest{
public static volatile int race=0;
public static void increase(){
race++;
}
private static final int THREADS_COUNT=20;
public static void main(String[]args){
Thread[]threads=new Thread[THREADS_COUNT];
for(int i=0;i<THREADS_COUNT;i++){
threads[i]=new Thread(new Runnable(){
@Override
public void run(){
for(int i=0;i<10000;i++){
increase();
}
}
});
threads[i].start();
}
//等待所有累加线程都结束
while(Thread.activeCount()>1)
Thread.yield();
System.out.println(race);
}
}
这段代码发起了20个线程,每个线程对race变量进行10000次自增操作,如果这段代码能够正确并发的话,最后输出的结果应该是200000。读者运行完这段代码之后,并不会获得期望的结果,而且会发现每次运行程序,输出的结果都不一样,都是一个小于200000的数字,这是为什么呢?
问题就出现在自增运算“race++”之中,我们用Javap反编译这段代码后会得到【代码清单】12-2,发现只有一行代码的increase()方法在Class文件中是由4条字节码指令构成的(return指令不是由race++产生的,这条指令可以不计算),从字节码层面上很容易就分析出并发失败的原因了:当getstatic指令把race的值取到操作栈顶时,volatile关键字保证了race的值在此时是正确的,但是在执行iconst_1、iadd这些指令的时候,其他线程可能已经把race的值加大了,而在操作栈顶的值就变成了过期的数据,所以putstatic指令执行后就可能把较小的race值同步回主内存之中。
【代码清单】12-2 VolatileTest的字节码
public static void increase();
Code:
Stack=2,Locals=0,Args_size=0
0:getstatic#13;//Field race:I
3:iconst_1
4:iadd
5:putstatic#13;//Field race:I
8:return
LineNumberTable:
line 14:0
line 15:8
客观地说,笔者在此使用字节码来分析并发问题,仍然是不严谨的,因为即使编译出来只有一条字节码指令,也并不意味执行这条指令就是一个原子操作。一条字节码指令在解释执行时,解释器将要运行许多行代码才能实现它的语义,如果是编译执行,一条字节码指令也可能转化成若干条本地机器码指令,此处使用-XX:+PrintAssembly参数输出反汇编来分析会更加严谨一些,但考虑到读者阅读的方便,并且字节码已经能说明问题,所以此处使用字节码来分析。
由于volatile变量只能保证可见性,在不符合以下两条规则的运算场景中,我们仍然要通过加锁(使用synchronized或java.util.concurrent中的原子类)来保证原子性。
而在像如下的【代码清单】12-3所示的这类场景就很适合使用volatile变量来控制并发,当shutdown()方法被调用时,能保证所有线程中执行的doWork()方法都立即停下来。
volatile boolean shutdownRequested;
public void shutdown(){
shutdownRequested=true;
}
public void doWork(){
while(!shutdownRequested){
//do stuff
}
}
使用volatile变量的第二个语义是禁止指令重排序优化,普通的变量仅仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果,而不能保证变量赋值操作的顺序与程序代码中的执行顺序一致。因为在一个线程的方法执行过程中无法感知到这点,这也就是Java内存模型中描述的所谓的“线程内表现为串行的语义”
介绍完Java内存模型的相关操作和规则,我们再整体回顾一下这个模型的特征。Java内存模型是围绕着在并发过程中如何处理原子性、可见性和有序性这3个特征来建立的,我们逐个来看一下哪些操作实现了这3个特性。
原子性(Atomicity):由Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write,我们大致可以认为基本数据类型的访问读写是具备原子性的(例外就是long和double的非原子性协定,读者只要知道这件事情就可以了,无须太过在意这些几乎不会发生的例外情况)。
如果应用场景需要一个更大范围的原子性保证(经常会遇到),Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐式地使用这两个操作,这两个字节码指令反映到Java代码中就是同步块——synchronized关键字,因此在synchronized块之间的操作也具备原子性。
可见性(Visibility):可见性是指当一个线程修改了共享变量的值,其他线程能够立即得知这个修改。上文在讲解volatile变量的时候我们已详细讨论过这一点。Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此,普通变量与volatile变量的区别是,volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。因此,可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。
除了volatile之外,Java还有两个关键字能实现可见性,即synchronized和final。同步块的可见性是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)”这条规则获得的,而final关键字的可见性是指:被final修饰的字段在构造器中一旦初始化完成,并且构造器没有把“this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那在其他线程中就能看见final字段的值。如【代码清单】12-7所示,变量i与j都具备可见性,它们无须同步就能被其他线程正确访问。
有序性(Ordering):Java内存模型的有序性在前面讲解volatile时也详细地讨论过了,Java程序中天然的有序性可以总结为一句话:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句是指“线程内表现为串行的语义”(Within-Thread As-If-Serial Semantics),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。
Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性,volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由“一个变量在同一个时刻只允许一条线程对其进行lock操作”这条规则获得的,这条规则决定了持有同一个锁的两个同步块只能串行地进入。
介绍完并发中3种重要的特性后,读者有没有发现synchronized关键字在需要这3种特性的时候都可以作为其中一种的解决方案?看起来很“万能”吧。的确,大部分的并发控制操作都能使用synchronized来完成。synchronized的“万能”也间接造就了它被程序员滥用的局面,越“万能”的并发控制,通常会伴随着越大的性能影响,这点我们将在第13章讲解虚拟机锁优化时再介绍。
12.4.1 线程的实现
的资源分配和执行调度分开,各个线程既可以共享进程资源(内存地址、文件I/O等),又可以独立调度(线程是CPU调度的基本单位)。
主流的操作系统都提供了线程实现,Java语言则提供了在不同硬件和操作系统平台下对线程操作的统一处理,每个已经执行start()且还未结束的java.lang.Thread类的实例就代表了一个线程。我们注意到Thread类与大部分的Java API有显著的差别,它的所有关键方法都是声明为Native的。在Java API中,一个Native方法往往意味着这个方法没有使用或无法使用平台无关的手段来实现(当然也可能是为了执行效率而使用Native方法,不过,通常最高效率的手段也就是平台相关的手段)。正因为如此,作者把本节的标题定为“线程的实现”而不是“Java线程的实现”。
实现线程主要有3种方式:使用内核线程实现、使用用户线程实现和使用用户线程加轻量级进程混合实现。
1.使用内核线程实现
内核线程(Kernel-Level Thread,KLT)就是直接由操作系统内核(Kernel,下称内核)支持的线程,这种线程由内核来完成线程切换,内核通过操纵调度器(Scheduler)对线程进行调度,并负责将线程的任务映射到各个处理器上。每个内核线程可以视为内核的一个分身,这样操作系统就有能力同时处理多件事情,支持多线程的内核就叫做多线程内核(Multi-Threads Kernel)。
程序一般不会直接去使用内核线程,而是去使用内核线程的一种高级接口——轻量级进程(Light Weight Process,LWP),轻量级进程就是我们通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程。这种轻量级进程与内核线程之间1:1的关系称为一对一的线程模型
由于内核线程的支持,每个轻量级进程都成为一个独立的调度单元,即使有一个轻量级进程在系统调用中阻塞了,也不会影响整个进程继续工作,但是轻量级进程具有它的局限性:首先,由于是基于内核线程实现的,所以各种线程操作,如创建、析构及同步,都需要进行系统调用。而系统调用的代价相对较高,需要在用户态(User Mode)和内核态(Kernel Mode)中来回切换。其次,每个轻量级进程都需要有一个内核线程的支持,因此轻量级进程要消耗一定的内核资源(如内核线程的栈空间),因此一个系统支持轻量级进程的数量是有限的。
2.使用用户线程实现
从广义上来讲,一个线程只要不是内核线程,就可以认为是用户线程(User Thread,UT),因此,从这个定义上来讲,轻量级进程也属于用户线程,但轻量级进程的实现始终是建立在内核之上的,许多操作都要进行系统调用,效率会受到限制。
而狭义上的用户线程指的是完全建立在用户空间的线程库上,系统内核不能感知线程存在的实现。用户线程的建立、同步、销毁和调度完全在用户态中完成,不需要内核的帮助。如果程序实现得当,这种线程不需要切换到内核态,因此操作可以是非常快速且低消耗的,也可以支持规模更大的线程数量,部分高性能数据库中的多线程就是由用户线程实现的。这种进程与用户线程之间1:N的关系称为一对多的线程模型
使用用户线程的优势在于不需要系统内核支援,劣势也在于没有系统内核的支援,所有的线程操作都需要用户程序自己处理。线程的创建、切换和调度都是需要考虑的问题,而且由于操作系统只把处理器资源分配到进程,那诸如“阻塞如何处理”、“多处理器系统中如何将线程映射到其他处理器上”这类问题解决起来将会异常困难,甚至不可能完成。因而使用用户线程实现的程序一般都比较复杂[注释],除了以前在不支持多线程的操作系统中(如DOS)的多线程程序与少数有特殊需求的程序外,现在使用用户线程的程序越来越少了,Java、Ruby等语言都曾经使用过用户线程,最终又都放弃使用它。
3.使用用户线程加轻量级进程混合实现
线程除了依赖内核线程实现和完全由用户程序自己实现之外,还有一种将内核线程与用户线程一起使用的实现方式。在这种混合实现下,既存在用户线程,也存在轻量级进程。用户线程还是完全建立在用户空间中,因此用户线程的创建、切换、析构等操作依然廉价,并且可以支持大规模的用户线程并发。而操作系统提供支持的轻量级进程则作为用户线程和内核线程之间的桥梁,这样可以使用内核提供的线程调度功能及处理器映射,并且用户线程的系统调用要通过轻量级线程来完成,大大降低了整个进程被完全阻塞的风险。在这种混合模式中,用户线程与轻量级进程的数量比是不定的,即为N:M的关系,如图12-5所示,这种就是多对多的线程模型。
许多UNIX系列的操作系统,如Solaris、HP-UX等都提供了N:M的线程模型实现。
4.Java线程的实现
Java线程在JDK 1.2之前,是基于称为“绿色线程”(Green Threads)的用户线程实现的,而在JDK 1.2中,线程模型替换为基于操作系统原生线程模型来实现。因此,在目前的JDK版本中,操作系统支持怎样的线程模型,在很大程度上决定了Java虚拟机的线程是怎样映射的,这点在不同的平台上没有办法达成一致,虚拟机规范中也并未限定Java线程需要使用哪种线程模型来实现。线程模型只对线程的并发规模和操作成本产生影响,对Java程序的编码和运行过程来说,这些差异都是透明的。
对于Sun JDK来说,它的Windows版与Linux版都是使用一对一的线程模型实现的,一条Java线程就映射到一条轻量级进程之中,因为Windows和Linux系统提供的线程模型就是一对一的
而在Solaris平台中,由于操作系统的线程特性可以同时支持一对一(通过Bound Threads或Alternate Libthread实现)及多对多(通过LWP/Thread Based Synchronization实现)的线程模型,因此在Solaris版的JDK中也对应提供了两个平台专有的虚拟机参数:-XX:+UseLWPSynchronization(默认值)和-XX:+UseBoundThreads来明确指定虚拟机使用哪种线程模型。