windows 线程同步

时间:2022-12-27 10:02:36

Windows 临界区,内核事件,互斥量,信号量。

临界区,内核事件,互斥量,信号量,都能完成线程的同步,在这里把他们各自的函数调用,结构定义,以及适用情况做一个总结。

临界区:

适用范围:它只能同步一个进程中的线程,不能跨进程同步。一般用它来做单个进程内的代码快同步,效率比较高。

相关结构:CRITICAL_SECTION  _critical

相关方法:

/*初始化,最先调用的函数。没什么好说的,一般windows编程都有类似初始化的方法*/

InitializeCriticalSection(& _critical)

/*释放资源,确定不使用_critical时调用,一般在程序退出的时候调用。如果以后还要用_critical,则要重新调用InitializeCriticalSection

*/

DeleteCriticalSection(& _critical)

/*

把代码保护起来。调用此函数后,他以后的资源其他线程就不能访问了。

*/

EnterCriticalSection(& _critical)

/*

离开临界区,表示其他线程能够进来了。注意EnterCritical和LeaveCrticalSection必须是成对出现的!当然除非你是想故意死锁!

*/

LeaveCriticalSection(& _critical)

代码Demo

临界区
#include "stdafx.h"
int thread_count = 0;
/*Mutex mutex1;*/
CRITICAL_SECTION g_cs;
DWORD CALLBACK thread_proc(LPVOID params)
{
    for(int i = 0; i < 10; ++i)
    {
            //synchronized(mutex1)
            EnterCriticalSection(&g_cs);
            {
                for(char c = 'A'; c <= 'Z'; ++c)
                {
                    printf("%c",c);
                }
                printf("\n");
            }
            LeaveCriticalSection(&g_cs);
    }
    thread_count--;
    return 0;
}

int _tmain(int argc, _TCHAR* argv[])
{
    InitializeCriticalSection(&g_cs);
    thread_count = 4;
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    while (thread_count) 
        Sleep(0);
    getchar();
    DeleteCriticalSection(&g_cs);
    return 0;

内核事件:

适用范围:多用于线程间的通信,可以跨进程同步。

相关结构: HANDLE hEvent;

相关方法:

/*

初始化方法,创建一个事件对象,第一个参数表示安全属性,一般情况下,遇到这类型的参数直接给空就行了,第二个参数是否是人工重置。(内核时间有两种工作模式:人工重置和自动重置。其区别会在下面提到。)。第三个参数是初始状态,第四个参数事件名称。

*/

hEvent = CreateEvent(NULL,FALSE,FALSE,NULL);

/*

等待单个事件置位,即线程会在这个函数阻塞直到事件被置位,SetEvent。

如果是自动重置事件,则在此函数返返回后系统会自动调用ResetEvent(hEvnet),重置事件,保证其他线程不能访问。

如果是人工重置事件,则在此函数返回以后,系统的其他线程能继续访问。

第二个参数说明等待事件,INIFINET表示一直等待。

*/

WatiForSingleObject(hEvent,INIFINET)

/*

置位事件,只要使事件置位线程才能进去访问。即WatiForSingleObject(hEvent,INIFINET)才返回

*/

SerEvent(hEvent);

/*

重置事件,使得WatiForSingleObject()不返回

*/

ResetEvent(hEvent)

/*

等待多个事件对象。参数nCount指定了要等待的内核对象的数目,存放这些内核对象的数组由lpHandles来指向。fWaitAll对指定的这nCount个内核对 象的两种等待方式进行了指定,为TRUE时当所有对象都被通知时函数才会返回,为FALSE则只要其中任何一个得到通知就可以返回。 dwMilliseconds在这里的作用与在WaitForSingleObject()中的作用是完全一致的。如果等待超时,函数将返回 WAIT_TIMEOUT。如果返回WAIT_OBJECT_0到WAIT_OBJECT_0+nCount-1中的某个值,则说明所有指定对象的状态均 为已通知状态(当fWaitAll为TRUE时)或是用以减去WAIT_OBJECT_0而得到发生通知的对象的索引(当fWaitAll为FALSE 时)

*/

WaitForMultiObjects(DWORD nCount, // 等待句柄数

 CONST HANDLE *lpHandles, // 句柄数组首地址

BOOL fWaitAll, // 等待标志

 DWORD dwMilliseconds // 等待时间间隔)

/*

打开一个命名的事件对象,可以用来跨进程同步

*/

HANDLE OpenEvent(
DWORD dwDesiredAccess, // 访问标志
BOOL bInheritHandle, // 继承标志
LPCTSTR lpName // 指向事件对象名的指针
);

测试代码

内核事件
#include "stdafx.h"
/*#include "Mutex.h"*/
int thread_count = 0;
/*Mutex mutex1;*/
/*CRITICAL_SECTION g_cs;*/
HANDLE hEvent;
DWORD CALLBACK thread_proc(LPVOID params)
{
    for(int i = 0; i < 10; ++i)
    {
            //synchronized(mutex1)
            //EnterCriticalSection(&g_cs);
            
            WaitForSingleObject(hEvent,INFINITE);
            {    
                for(char c = 'A'; c <= 'Z'; ++c)
                {
                    printf("%c",c);
                    Sleep(1);
                }
                printf("\n");
            }
            SetEvent(hEvent);
            //LeaveCriticalSection(&g_cs);
    }
    thread_count--;
    return 0;
}

int _tmain(int argc, _TCHAR* argv[])
{
    //InitializeCriticalSection(&g_cs);
    hEvent = CreateEvent(NULL,FALSE,FALSE,NULL);
    SetEvent(hEvent);
    thread_count = 4;
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    while (thread_count) 
        Sleep(0);
    getchar();
    //DeleteCriticalSection(&g_cs);
    return 0;
}

互斥量:

适用范围:可以跨进程同步,还可以用来保证程序只有一个实例运行(创建命名互斥量),也可以用来做线程间的同步

相关结构:HANDLE hMutex;

相关方法:

/*

创建互斥量,初始化的工作

参数一为安全选项,一般为空

参数二表示当前互斥量是否属于某个线程,一般为空

参数三互斥量的名称,如果需要跨进程同步或者需要保证程序只有一个实例运行,则需要设置,其他情况一般为空。

*/

CreateMutex(NULL,FALSE,NULL)

WaitForSingleObject(hMutex,INIFINET);//同事件对象

/*

释放互斥量,以使得其他线程可以访问。

*/

ReleaseMutex(hMutex)

/*

在互斥对象通知引 起调用等待函数返回时,等待函数的返回值不再是通常的WAIT_OBJECT_0(对于WaitForSingleObject()函数)或是在 WAIT_OBJECT_0到WAIT_OBJECT_0+nCount-1之间的一个值(对于WaitForMultipleObjects()函 数),而是将返回一个WAIT_ABANDONED_0(对于WaitForSingleObject()函数)或是在WAIT_ABANDONED_0 到WAIT_ABANDONED_0+nCount-1之间的一个值(对于WaitForMultipleObjects()函数)。

*/

WaitForMultiObjects(DWORD nCount, // 等待句柄数

 CONST HANDLE *lpHandles, // 句柄数组首地址

BOOL fWaitAll, // 等待标志

 DWORD dwMilliseconds // 等待时间间隔)

/*

打开一个已经创建好了的命名互斥量,用于跨进程同步

*/

HANDLE OpenMutex(
DWORD dwDesiredAccess, // 访问标志
BOOL bInheritHandle, // 继承标志
LPCTSTR lpName // 互斥对象名
);

测试demo

互斥量
#include "stdafx.h"
/*#include "Mutex.h"*/
int thread_count = 0;
/*Mutex mutex1;*/
/*CRITICAL_SECTION g_cs;*/
//HANDLE hEvent;
HANDLE hMutex;
DWORD CALLBACK thread_proc(LPVOID params)
{
    for(int i = 0; i < 10; ++i)
    {
            //synchronized(mutex1)
            //EnterCriticalSection(&g_cs);
            WaitForSingleObject(hMutex,INFINITE);
            //WaitForSingleObject(hEvent,INFINITE);
            //{    
                for(char c = 'A'; c <= 'Z'; ++c)
                {
                    printf("%c",c);
                    Sleep(1);
                }
                printf("\n");
            //}
            //SetEvent(hEvent);
            ReleaseMutex(hMutex);
            //LeaveCriticalSection(&g_cs);
    }
    thread_count--;
    return 0;
}

int _tmain(int argc, _TCHAR* argv[])
{
    //InitializeCriticalSection(&g_cs);
    //hEvent = CreateEvent(NULL,FALSE,FALSE,NULL);
    //SetEvent(hEvent);
    hMutex = CreateMutex(NULL,FALSE,NULL);
    thread_count = 4;
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    CreateThread(0, 0, thread_proc, 0, 0, 0);
    while (thread_count) 
        Sleep(0);
    getchar();
    //DeleteCriticalSection(&g_cs);
    return 0;
}

注意事项:所有的同步操作的必须成对存在,即锁一对象,一定要释放一个对象。但是如果在保护的代码快中发生异常,程序流程发生意外跳转而没有释放锁对象,导致程序进入死锁。所以在程序中必要的异常处理是必须的,但是C++中没有finally这样的关键字来保证不管是否发生异常都会执行的代码快。那怎么办呢?这就需要对C++的异常加一些小技巧来处理了......

windows 线程同步的更多相关文章

  1. windows线程同步

    一.前言 之前在项目中,由于需要使用到多线程,多线程能够提高执行的效率,同时也带来线程同步的问题,故特此总结如下. 二.windows线程同步机制 windows线程同步机制常用的有几种:Event. ...

  2. windows线程同步的总结

    一 线程 1)如果你正在编写C/C++代码,决不应该调用CreateThread.相反,应该使用VisualC++运行期库函数_beginthreadex,退出也应该使用_endthreadex.如果 ...

  3. 关于windows线程同步的四种方法

    #include "stdafx.h" #include "iostream" #include "list" #include &quot ...

  4. Windows线程同步(下)

    线程同步三:事件 CreateEvent:Creates or opens a named or unnamed event object. HANDLE WINAPI CreateEvent( _I ...

  5. Windows线程同步(上)

    先介绍一个创建线程的API,参考:https://msdn.microsoft.com/en-us/library/windows/desktop/ms682453%28v=vs.85%29.aspx ...

  6. windows线程同步的几种方式

    以下为main函数的测试代码 具体线程同步的实现代码请下载:https://github.com/kingsunc/ThreadSynchro #include <stdio.h> #in ...

  7. 总结windows多线程同步互斥

    windows多线程同步互斥--总结 我的windows多线程系列文章: windows多线程--原子操作 windows多线程同步--事件 windows多线程同步--互斥量 windows多线程同 ...

  8. Windows线程&plus;进程通信

    一 Windows线程进程 1)定义 按照MS的定义, Windows中的进程简单地说就是一个内存中的可执行程序, 提供程序运行的各种资源. 进程拥有虚拟的地址空间, 可执行代码, 数据, 对象句柄集 ...

  9. 操作系统中的进程同步与Window中利用内核对象进行线程同步的关系

    操作系统中为了解决进程间同步问题提出了用信号量机制,信号量可分为四种类型分别是互斥型信号量,记录型信号量,AND型信号量,信号量集. 互斥型信号量 互斥型信号量是资源数量为1的特殊的记录型信号量.表示 ...

随机推荐

  1. hdu1000&comma;hdu1001&comma;hdu1002&comma;hdu1003

    hdu1000 仅仅是为了纪念 #include <cstdio> int main() { int a,b; while (scanf("%d%d",&a,& ...

  2. java 15 - 8 集合框架(并发修改异常的产生原因以及解决方案)

    问题?   我有一个集合,如下,请问,我想判断里面有没有"world"这个元素,如果有,我就添加一个"javaee"元素,请写代码实现.  面试题: Concu ...

  3. Spring中Bean的命名问题(id和name区别)及ref和idref之间的区别

    Spring中Bean的命名 1.每个Bean可以有一个id属性,并可以根据该id在IoC容器中查找该Bean,该id属性值必须在IoC容器中唯一: 2.可以不指定id属性,只指定全限定类名,如: & ...

  4. 杭电1002-A &plus; B Problem II

    #include<stdio.h>#include<string.h> int main(){    char str1[1001],str2[1001];    int t, ...

  5. BZOJ 1042 硬币购物

    先不考虑限制,那么有dp[i]表示i元钱的方案数. 然后考虑限制,发现可以容斥. 其实整个题就是两个容斥原理.感觉出的蛮好的. #include<iostream> #include&lt ...

  6. LintCode &quot&semi;Coins in a Line II&quot&semi; &excl;

    Nice one to learn: DP + Game Theoryhttps://lefttree.gitbooks.io/leetcode/content/dynamicProgramming2 ...

  7. HDU 2196 Computer 树形DP 经典题

    给出一棵树,边有权值,求出离每一个节点最远的点的距离 树形DP,经典题 本来这道题是无根树,可以随意选择root, 但是根据输入数据的方式,选择root=1明显可以方便很多. 我们先把边权转化为点权, ...

  8. LintCode-Majority Number

    Given an array of integers, the majority number is the number that occurs more than half of the size ...

  9. 【转】gcc&sol;g&plus;&plus; 如何支持c11 &sol; c&plus;&plus;11标准编译

     如果用命令 g++ -g -Wall main.cpp  编译以下代码 : 1 2 3 4 5 6 7 8 9 10 11 12 /*     file : main.cpp */ #include ...

  10. 好程序员web前端分享值得参考的css理论:OOCSS、SMACSS与BEM

    好程序员web前端分享值得参考的css理论:OOCSS.SMACSS与BEM 最近在The Sass Way里看到了Modular CSS typography一文,发现文章在开头部分就提到了OOCS ...