先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,cool,high,TRUE,判断一下会不会去打球。
table 1
outlook | temperature | humidity | windy | play |
sunny | hot | high | FALSE | no |
sunny | hot | high | TRUE | no |
overcast | hot | high | FALSE | yes |
rainy | mild | high | FALSE | yes |
rainy | cool | normal | FALSE | yes |
rainy | cool | normal | TRUE | no |
overcast | cool | normal | TRUE | yes |
sunny | mild | high | FALSE | no |
sunny | cool | normal | FALSE | yes |
rainy | mild | normal | FALSE | yes |
sunny | mild | normal | TRUE | yes |
overcast | mild | high | TRUE | yes |
overcast | hot | normal | FALSE | yes |
rainy | mild | high | TRUE | no |
这个问题当然可以用朴素贝叶斯法求解,分别计算在给定天气条件下打球和不打球的概率,选概率大者作为推测结果。
现在我们使用ID3归纳决策树的方法来求解该问题。
预备知识:信息熵
熵是无序性(或不确定性)的度量指标。假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn),那信息熵定义为:
通常以2为底数,所以信息熵的单位是bit。
补充两个对数去处公式:
ID3算法
构造树的基本想法是随着树深度的增加,节点的熵迅速地降低。熵降低的速度越快越好,这样我们有望得到一棵高度最矮的决策树。
在没有给定任何天气信息时,根据历史数据,我们只知道新的一天打球的概率是9/14,不打的概率是5/14。此时的熵为:
属性有4个:outlook,temperature,humidity,windy。我们首先要决定哪个属性作树的根节点。
对每项指标分别统计:在不同的取值下打球和不打球的次数。
table 2
outlook | temperature | humidity | windy | play | |||||||||
yes | no | yes | no | yes | no | yes | no | yes | no | ||||
sunny | 2 | 3 | hot | 2 | 2 | high | 3 | 4 | FALSE | 6 | 2 | 9 | 5 |
overcast | 4 | 0 | mild | 4 | 2 | normal | 6 | 1 | TRUR | 3 | 3 | ||
rainy | 3 | 2 | cool | 3 | 1 |
下面我们计算当已知变量outlook的值时,信息熵为多少。
outlook=sunny时,2/5的概率打球,3/5的概率不打球。entropy=0.971
outlook=overcast时,entropy=0
outlook=rainy时,entropy=0.971
而根据历史统计数据,outlook取值为sunny、overcast、rainy的概率分别是5/14、4/14、5/14,所以当已知变量outlook的值时,信息熵为:5/14 × 0.971 + 4/14 × 0 + 5/14 × 0.971 = 0.693
这样的话系统熵就从0.940下降到了0.693,信息增溢gain(outlook)为0.940-0.693=0.247
同样可以计算出gain(temperature)=0.029,gain(humidity)=0.152,gain(windy)=0.048。
gain(outlook)最大(即outlook在第一步使系统的信息熵下降得最快),所以决策树的根节点就取outlook。
接下来要确定N1取temperature、humidity还是windy?在已知outlook=sunny的情况,根据历史数据,我们作出类似table 2的一张表,分别计算gain(temperature)、gain(humidity)和gain(windy),选最大者为N1。
依此类推,构造决策树。当系统的信息熵降为0时,就没有必要再往下构造决策树了,此时叶子节点都是纯的--这是理想情况。最坏的情况下,决策树的高度为属性(决策变量)的个数,叶子节点不纯(这意味着我们要以一定的概率来作出决策)。
python实现
训练json格式[["sunny", "hot", "high", "false", "no"], ["sunny", "hot", "high", "true", "no"], ["overcast", "hot", "high", "true", "yes"], ["rainy", "mild", "high", "false", "yes"], ["rainy", "cool", "normal", "false", "yes"], ["rainy", "cool", "normal", "true", "no"], ["overcast", "cool", "normal", "true", "yes"], ["sunny", "mild", "high", "false", "no"], ["sunny", "cool", "normal", "false", "yes"], ["rainy", "mild", "normal", "false", "yes"], ["sunny", "mild", "normal", "true", "yes"], ["overcast", "mild", "high", "true", "yes"], ["overcast", "hot", "normal", "false", "yes"], ["rainy", "mild", "high", "true", "no"]]测试json格式["sunny", "hot", "high", "false"]
代码地址:https://git.coding.net/yumh/DecisionTree.git 中的DecisionTree-master.zip
项目采用zc.bulidout工具构建,可以参考博客 http://blog.csdn.net/u011630575/article/details/52940099
运行方法
mkdir decstree
cd decstree
buildout init
git clone https://git.coding.net/yumh/DecisionTree.git
python bootstrap.py
bin/buildout
buildout
bin/destree --train_file data/train.txt --test_file data/test.txt
用图形象地表示就是: