$k$的范围非常小, $O(n2^k)$求出状态最多为$S$的路径数, 然后容斥.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n, k, mx, sum; int a[N], dp[N], vis[N]; vector<int> g[N]; void dfs(int x, int fa, int S) { if ((a[x]|S)!=S||vis[x]) return; ++sum, vis[x]=1; for (int y:g[x]) if (y!=fa) dfs(y,x,S); } int main() { scanf("%d%d", &n, &k); REP(i,1,n) a[i]=1<<rd()-1; REP(i,2,n) { int u=rd(),v=rd(); g[u].pb(v),g[v].pb(u); } int mx = (1<<k)-1; REP(S,1,mx) { REP(i,1,n) vis[i]=0; REP(i,1,n) if (!vis[i]) { sum = 0, dfs(i,0,S); dp[S] = ((ll)sum*(sum-1)%P*(P+1)/2+sum+dp[S])%P; } } int ans = 0; REP(S,1,mx) { int cnt = 0; for (int j=(S-1)&S; j; j=(j-1)&S) dp[S]-=dp[j]; ans = ((ll)ans+qpow(131,__builtin_popcount(S))*dp[S])%P; } if (ans<0) ans+=P; printf("%d\n", ans); }