符合语言习惯的Python优雅编程技巧

时间:2022-12-18 12:23:50

Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。要写出 Pythonic(优雅的、地道的、整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,下面列举一些常见的Pythonic写法。

0. 程序必须先让人读懂,然后才能让计算机执行。

“Programs must be written for people to read, and only incidentally for machines to execute.”

1. 交换赋值

##不推荐
temp = a
a
= b
b
= a

##推荐
a, b = b, a # 先生成一个元组(tuple)对象,然后unpack

 

2. Unpacking

##不推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name
= l[0]
last_name
= l[1]
phone_number
= l[2]

##推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name, last_name, phone_number
= l
# Python 3 Only
first, *middle, last = another_list

 

3. 使用操作符in

##不推荐
if fruit == "apple" or fruit == "orange" or fruit == "berry":
# 多次判断

##推荐
if fruit in ["apple", "orange", "berry"]:
# 使用 in 更加简洁

 

4. 字符串操作

##不推荐
colors = ['red', 'blue', 'green', 'yellow']

result
= ''
for s in colors:
result
+= s # 每次赋值都丢弃以前的字符串对象, 生成一个新对象

##推荐
colors = ['red', 'blue', 'green', 'yellow']
result
= ''.join(colors) # 没有额外的内存分配

 

5. 字典键值列表

##不推荐
for key in my_dict.keys():
# my_dict[key] ...

##推荐
for key in my_dict:
# my_dict[key] ...

# 只有当循环中需要更改key值的情况下,我们需要使用 my_dict.keys()
#
生成静态的键值列表。

 

6. 字典键值判断

##不推荐
if my_dict.has_key(key):
# ...do something with d[key]

##推荐
if key in my_dict:
# ...do something with d[key]

 

7. 字典 get 和 setdefault 方法

##不推荐
navs = {}
for (portfolio, equity, position) in data:
if portfolio not in navs:
navs[portfolio]
= 0
navs[portfolio]
+= position * prices[equity]
##推荐
navs = {}
for (portfolio, equity, position) in data:
# 使用 get 方法
navs[portfolio] = navs.get(portfolio, 0) + position * prices[equity]
# 或者使用 setdefault 方法
navs.setdefault(portfolio, 0)
navs[portfolio]
+= position * prices[equity]

 

8. 判断真伪

##不推荐
if x == True:
# ....
if len(items) != 0:
# ...
if items != []:
# ...

##推荐
if x:
# ....
if items:
# ...

 

9. 遍历列表以及索引

##不推荐
items = 'zero one two three'.split()
# method 1
i = 0
for item in items:
print i, item
i
+= 1
# method 2
for i in range(len(items)):
print i, items[i]

##推荐
items = 'zero one two three'.split()
for i, item in enumerate(items):
print i, item

 

10. 列表推导

##不推荐
new_list = []
for item in a_list:
if condition(item):
new_list.append(fn(item))

##推荐
new_list = [fn(item) for item in a_list if condition(item)]

 

11. 列表推导-嵌套

##不推荐
for sub_list in nested_list:
if list_condition(sub_list):
for item in sub_list:
if item_condition(item):
# do something...
#
#推荐
gen = (item for sl in nested_list if list_condition(sl) \
for item in sl if item_condition(item))
for item in gen:
# do something...

 

12. 循环嵌套

##不推荐
for x in x_list:
for y in y_list:
for z in z_list:
# do something for x & y

##推荐
from itertools import product
for x, y, z in product(x_list, y_list, z_list):
# do something for x, y, z

 

13. 尽量使用生成器代替列表, 除非必须用到列表特有的函数

##不推荐
def my_range(n):
i
= 0
result
= []
while i < n:
result.append(fn(i))
i
+= 1
return result # 返回列表

##推荐
def my_range(n):
i
= 0
result
= []
while i < n:
yield fn(i) # 使用生成器代替列表
i += 1

 

14. 中间结果尽量使用imap/ifilter代替map/filter

##不推荐
reduce(rf, filter(ff, map(mf, a_list)))

##推荐
from itertools import ifilter, imap
reduce(rf, ifilter(ff, imap(mf, a_list)))

##lazy evaluation 会带来更高的内存使用效率,特别是当处理大数据操作的时候。

 

15. 使用any/all函数

##不推荐
found = False
for item in a_list:
if condition(item):
found
= True
break
if found:
# do something if found...

##推荐
if any(condition(item) for item in a_list):
# do something if found...

 

16. 属性(property)

##不推荐
class Clock(object):
def __init__(self):
self.
__hour = 1

def setHour(self, hour):
if 25 > hour > 0:
self.
__hour = hour
else:
raise BadHourException

def getHour(self):
return self.__hour


##推荐
class Clock(object):
def __init__(self):
self.
__hour = 1

def __setHour(self, hour):
if 25 > hour > 0:
self.
__hour = hour
else:
raise BadHourException

def __getHour(self):
return self.__hour

hour
= property(__getHour, __setHour)

 

17. 使用 with 处理文件打开

##不推荐
f = open("some_file.txt")
try:
data
= f.read()
# 其他文件操作..
finally:
f.close()

##推荐
with open("some_file.txt") as f:
data
= f.read()
# 其他文件操作...

 

18. 使用 with 忽视异常(仅限Python 3)

##不推荐
try:
os.remove(
"somefile.txt")
except OSError:
pass

##推荐
from contextlib import ignored # Python 3 only

with ignored(OSError):
os.remove(
"somefile.txt")

 

19. 使用 with 处理加锁

##不推荐
import threading
lock
= threading.Lock()

lock.acquire()
try:
# 互斥操作...
finally:
lock.release()

##推荐
import threading
lock
= threading.Lock()

with lock:
# 互斥操作...

 

20. 参考

1) Idiomatic Python: http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html

2) PEP 8: Style Guide for Python Code: http://www.python.org/dev/peps/pep-0008/