二叉树的遍历 &【NOIP2001普及组】& 洛谷 P1030 求先序排列

时间:2022-12-17 17:16:07

题目链接

https://www.luogu.org/problemnew/show/P1030

模板题

先讲一下二叉树的遍历

二叉树的遍历

  • 分类
  • 性质
  • 求法

分为三类:

  1. 先序遍历(PreOrder):根节点→左子树→右子树
  2. 中序遍历(InOrder):左子树→根节点→右子树
  3. 后序遍历(PostOrder):左子树→右子树→根节点

我们可知:

  • **序遍历实际上是指根节点的位置
  • 无论哪种遍历顺序,左子树都在右子树的前面
  • 在前序遍历中,第一个点是根节点
  • 在后序遍历中,最后一个点是根节点

例如这样一个二叉树:

二叉树的遍历 &【NOIP2001普及组】& 洛谷 P1030 求先序排列

它的先序遍历:A--B--D--E--X--C--F--Y--Z

它的中序遍历:D--B--X--E--A--Y--F--Z--C

它的后序遍历:D--X--E--B--Y--Z--F--C--A

求后序遍历

用到递归的思想,求整个二叉树的后序遍历就是求每个子树的后序遍历,最后连接起来即可。

 1 #include<iostream>
 2 using namespace std;
 3 string z,q;
 4 int len,cnt;
 5 void PostOrder(int l,int r){//求中序遍历中l到r这个子树的后序遍历 
 6     if(l>r) return;            //边界条件 
 7     int i;
 8     char ans=q[cnt++];        //先序遍历的第一个是根节点 
 9     for(i=l;i<=r;i++){
10         if(z[i]==ans) break;//找到根节点在中序遍历中的位置 
11     }
12     PostOrder(l,i-1);                //递归左子树 
13     PostOrder(i+1,r);                //递归右子树 
14     cout<<ans;        //注意后序遍历是左右根的顺序,所以最后输出根 
15 }
16 int main()
17 {
18     cin>>z>>q;            //z是中序遍历,q是先序遍历 
19     len=z.length()-1;
20     PostOrder(0,z.length()-1);//一开始是整个子树 
21     return 0;
22 }

求先序遍历

这比求后序遍历稍微有些复杂,需要保留根节点,即:PreOrder(左端点,右端点,根节点)。这是因为根节点在先序遍历中是从前往后排列的,而在后序遍历中不是这样的。

还是这个图:

二叉树的遍历 &【NOIP2001普及组】& 洛谷 P1030 求先序排列

它的先序遍历:A--B--D--E--X--C--F--Y--Z

它的中序遍历:D--B--X--E--A--Y--F--Z--C

它的后序遍历:D--X--E--B--Y--Z--F--C--A

在先序遍历中,根节点依次是A,B,D,E,X……是按照从前往后的顺序排列的,所以可以直接 ans=q[cnt++]; 而在后序遍历中却不是这样。

有人或许会说:那后序遍历中根节点是从后往前排列的,其实这是一个错误的结论。还是看这一个二叉树,后序遍历是A,C,F,Z,Y,B……显然是按照根→右子树→左子树排列的,而我们求的先序排列是根→左→右,显然这种方法不行。

所以我们需要多传一个参数,来记录根节点在后序遍历中的位置。重点:确定子树的根节点在后序遍历中的位置。

 

 1 #include<iostream>
 2 using namespace std;
 3 string z,h;
 4 int len;
 5 void PreOrder(int l,int r,int root){//求中序遍历中l到r这个子树(以root为根)的后序遍历 
 6     if(l>r) return;
 7     int i;
 8     for(i=l;i<=r;i++){                //和求后序遍历一样 
 9         if(z[i]==h[root]) break;
10     }
11     cout<<h[root];                 //注意是根左右 
12     PreOrder(l,i-1,root-(r-i)-1);//左子树的根节点就是原来根节点减去右子树的节点数的上一个(r-i就是右子树的节点数) 
13     PreOrder(i+1,r,root-1);         //右子树的根节点就是后序遍历中原来根节点的上一个 
14 }
15 int main()
16 {
17     cin>>z>>h;
18     len=h.length()-1;
19     PreOrder(0,z.length()-1,len);
20     return 0;
21 }

而在知道先序遍历和后序遍历的情况下,中序遍历是不唯一的,但可以求出情况数(后面将做补充)。

//NOIP2001普及组t3