BZOJ 2733 HNOI 2012 永无乡 平衡树启示式合并

时间:2024-01-02 15:06:52

题目大意:有一些岛屿,一開始由一些无向边连接。

后来也有不断的无向边增加,每个岛屿有个一独一无二的重要度,问随意时刻的与一个岛屿联通的全部岛中重要度第k大的岛的编号是什么。

思路:首先连通性一定要用并查集维护。然后就是联通快内的第k大问题,显然是平衡树。可是并查集的合并怎么搞?能够考虑按秩合并,这种话就保证每次在平衡树中处理的元素尽量的少,就能够水过这个题了。

注意一下输出-1的推断。

CODE:

#include <map>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 100010
#define SIZE(a) (a == NULL ? 0:a->size)
using namespace std; map<int,int> G; struct Complex{
int val,random,size,cnt;
Complex *son[2]; Complex(int _) {
val = _;
random = rand();
size = cnt = 1;
son[0] = son[1] = NULL;
}
int Compare(int x) {
if(x == val) return -1;
return x > val;
}
void Maintain() {
size = cnt;
if(son[0] != NULL) size += son[0]->size;
if(son[1] != NULL) size += son[1]->size;
}
}; int points,edges,asks;
int src[MAX];
int father[MAX],cnt[MAX]; Complex *tree[MAX]; char c[10]; int Find(int x); inline void Rotate(Complex *&a,bool dir);
void Insert(Complex *&a,int x);
void Delete(Complex *&a,int x);
int Kth(Complex *a,int k); int main()
{
cin >> points >> edges;
for(int i = 1;i <= points; ++i) {
father[i] = i,cnt[i] = 1;
scanf("%d\n",&src[i]);
G[src[i]] = i;
}
for(int x,y,i = 1;i <= edges; ++i) {
scanf("%d%d",&x,&y);
int fx = Find(x);
int fy = Find(y);
if(fx != fy) {
father[fy] = fx;
cnt[fx] += cnt[fy];
}
}
for(int i = 1;i <= points; ++i) {
int fx = Find(i);
Insert(tree[fx],src[i]);
}
cin >> asks;
for(int x,y,i = 1;i <= asks; ++i) {
scanf("%s%d%d",c,&x,&y);
if(c[0] == 'Q') {
int fx = Find(x);
if(y > cnt[fx]) puts("-1");
else printf("%d\n",G[Kth(tree[fx],y)]);
}
else {
int fx = Find(x);
int fy = Find(y);
if(fx != fy) {
if(cnt[fy] > cnt[fx]) swap(fx,fy);
father[fy] = fx;
cnt[fx] += cnt[fy];
for(int j = 1;j <= cnt[fy]; ++j) {
int temp = Kth(tree[fy],1);
Delete(tree[fy],temp);
Insert(tree[fx],temp);
}
}
}
}
return 0;
} int Find(int x)
{
if(father[x] == x) return x;
return father[x] = Find(father[x]);
} inline void Rotate(Complex *&a,bool dir)
{
Complex *k = a->son[!dir];
a->son[!dir] = k->son[dir];
k->son[dir] = a;
a->Maintain(),k->Maintain();
a = k;
} inline void Insert(Complex *&a,int x)
{
if(a == NULL) {
a = new Complex(x);
return ;
}
int dir = a->Compare(x);
if(dir == -1)
a->cnt++;
else {
Insert(a->son[dir],x);
if(a->son[dir]->random > a->random)
Rotate(a,!dir);
}
a->Maintain();
} void Delete(Complex *&a,int x)
{
int dir = a->Compare(x);
if(dir != -1)
Delete(a->son[dir],x);
else {
if(a->cnt > 1)
--a->cnt;
else {
if(a->son[0] == NULL) a = a->son[1];
else if(a->son[1] == NULL) a = a->son[0];
else {
bool _dir = a->son[0]->random > a->son[1]->random;
Rotate(a,_dir);
Delete(a->son[_dir],x);
}
}
}
if(a != NULL) a->Maintain();
} int Kth(Complex *a,int k)
{
if(k <= SIZE(a->son[0])) return Kth(a->son[0],k);
k -= SIZE(a->son[0]);
if(k <= a->cnt) return a->val;
return Kth(a->son[1],k - a->cnt);
}