神经网络和深度学习
吴恩达 Andrew Ng
深层神经网络(Deep Neural Networks)
Deep L-layer Neural Networks
- 有一个隐藏层的神经网络,就是一个两层神经网络
- 算神经网络的层数时,只算隐藏层和输出层,输入层看作第0层
- 有一些函数浅层的网络学习不了
Forward propagation in a deep network
Getting your matrix dimensions right
- 确保前后矩阵一致
Why deep representations?
- 登堂入室
- 边缘探测器针对小区域
- put together simpler things that has detected in order to detect more complex things
- Circuit theory (电路理论)
- There are some functions that you can compute with a L-layer deep neural network while shallower networks require exponentially more hidden units to compute.
- 对于有些函数深层网络更合适
Forward and backward functions
backward propagation
summary
- lots of complexity of your learning algorithm comes from the data rather than your code
Parameters and Hyper parameters
- parameters(参数): W, b
- hyper parameters(超参数) (determines the parameters)
- learning rate
- the number of iterations of gradient descent
- the number of hidden layers
- choice of activation function
- 不断实验,找到合适的超参数 cycle of (Idea, Code, Experiment)
- just try a few values for the hyper parameters and double check
Deep learning and the human brain
- Today even neuroscientists have almost no idea what even a single neuron is doing.