HDU1061-Rightmost Digit-规律题,快速幂

时间:2023-12-31 14:34:56

Rightmost Digit

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 55522    Accepted Submission(s): 20987

Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2
3
4
Sample Output
7
6
Hint

In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.

第一个,找规律,代码:
#include<stdio.h>
typedef long long ll;
int main(){
int a[][]={{},{},{,,,},{,,,},{,},{},{},{,,,},{,,,},{,}};
ll m;
int n,i,h;
while(~scanf("%d",&n)){
for(int i=;i<n;i++){
scanf("%lld",&m);
h=m%;
if(h==||h==||h==||h==)
printf("%d",h);
else if(h==||h==)
printf("%d",a[h][m%]);
else
printf("%d",a[h][m%]);
printf("\n");
}
}
return ;
}

第二个,快速幂取模,代码:

#include<stdio.h>
typedef long long ll;
ll mod=1e5;
ll pow(ll a,ll b){
ll ans=;while(b!=){
if(b%==)
ans=ans*a%mod;
a=a*a%mod;
b=b/;
}
return ans;
}
int main(){
ll n,m,ans;
while(~scanf("%lld",&n)){
while(n--){
scanf("%lld",&m);
ans=pow(m,m)%;
printf("%lld\n",ans);
}
}
return ;
}