I'm using caret package to model the data using rpart package.
我正在使用插入包来使用rpart包对数据建模。
library('caret')
data(iris)
formula <- as.formula(Species ~.)
t <- train(formula,iris,method = "rpart",cp=0.002,maxdepth=8)
plot(t)
As a result I get object 't' and I'm trying to plot this object to get tree plot. But the result look like that:
结果我得到了对象't',我试图绘制这个对象来获得树图。但结果看起来像这样:
Are there any way to make a tree plot from caret train object?
有没有办法从插入符号列车对象制作树图?
3 个解决方案
#1
21
The object returned from caret::train()
is a list. The element finalModel
contains your model.
从caret :: train()返回的对象是一个列表。元素finalModel包含您的模型。
Try this:
尝试这个:
plot(t$finalModel)
text(t$finalModel)
#2
33
nicer looking treeplot:
看起来更漂亮的树图:
library(rattle)
fancyRpartPlot(t$finalModel)
#3
7
Had the same problem, but the answers given here wouldn't solve it, since I used a random forest instead of a tree, the following is for all coming here having the same issue:
有同样的问题,但这里给出的答案不会解决它,因为我使用随机森林而不是树,以下是所有来到这里有相同的问题:
In short: A tree can only be displayed when the method is something like:
简而言之:只有当方法类似于以下内容时才能显示树:
method = "rpart"
Using a random forest
使用随机森林
method = "rf"
will result in the following plot:
将导致以下情节:
Extended answer already here: Plot decision tree in R (Caret)
扩展答案已在此处:在R(Caret)中绘制决策树
#1
21
The object returned from caret::train()
is a list. The element finalModel
contains your model.
从caret :: train()返回的对象是一个列表。元素finalModel包含您的模型。
Try this:
尝试这个:
plot(t$finalModel)
text(t$finalModel)
#2
33
nicer looking treeplot:
看起来更漂亮的树图:
library(rattle)
fancyRpartPlot(t$finalModel)
#3
7
Had the same problem, but the answers given here wouldn't solve it, since I used a random forest instead of a tree, the following is for all coming here having the same issue:
有同样的问题,但这里给出的答案不会解决它,因为我使用随机森林而不是树,以下是所有来到这里有相同的问题:
In short: A tree can only be displayed when the method is something like:
简而言之:只有当方法类似于以下内容时才能显示树:
method = "rpart"
Using a random forest
使用随机森林
method = "rf"
will result in the following plot:
将导致以下情节:
Extended answer already here: Plot decision tree in R (Caret)
扩展答案已在此处:在R(Caret)中绘制决策树