http://blog.csdn.net/pipisorry/article/details/52209377
其它时间序列处理相关的包
[P4J 0.6: Periodic light curve analysis tools based on Information Theory]
pandas时序数据文件读取
dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m')
data = pd.read_csv('AirPassengers.csv', parse_dates='Month', index_col='Month',date_parser=dateparse)
print data.head()
read_csv时序参数
parse_dates:这是指定含有时间数据信息的列。正如上面所说的,列的名称为“月份”。
index_col:使用pandas 的时间序列数据背后的关键思想是:目录成为描述时间数据信息的变量。所以该参数告诉pandas使用“月份”的列作为索引。
date_parser:指定将输入的字符串转换为可变的时间数据。Pandas默认的数据读取格式是‘YYYY-MM-DD HH:MM:SS’?如需要读取的数据没有默认的格式,就要人工定义。这和dataparse的功能部分相似,这里的定义可以为这一目的服务。The default uses dateutil.parser.parser to do the conversion.
时间序列分析和处理Time Series
pandas has simple, powerful, and efficient functionality for performingresampling operations during frequency conversion (e.g., converting secondlydata into 5-minutely data). This is extremely common in, but not limited to,financial applications.
时序数据生成和表示
c = pandas.Timestamp('2012-01-01 00:00:08')
In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S') In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) In [105]: ts.resample('5Min', how='sum') Out[105]: 2012-01-01 25083 Freq: 5T, dtype: int32
Time zone representation
In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D') In [107]: ts = pd.Series(np.random.randn(len(rng)), rng) In [108]: ts Out[108]: 2012-03-06 0.464000 2012-03-07 0.227371 2012-03-08 -0.496922 2012-03-09 0.306389 2012-03-10 -2.290613 Freq: D, dtype: float64 In [109]: ts_utc = ts.tz_localize('UTC') In [110]: ts_utc Out[110]: 2012-03-06 00:00:00+00:00 0.464000 2012-03-07 00:00:00+00:00 0.227371 2012-03-08 00:00:00+00:00 -0.496922 2012-03-09 00:00:00+00:00 0.306389 2012-03-10 00:00:00+00:00 -2.290613 Freq: D, dtype: float64
时序转换
Convert to another time zone
In [111]: ts_utc.tz_convert('US/Eastern') Out[111]: 2012-03-05 19:00:00-05:00 0.464000 2012-03-06 19:00:00-05:00 0.227371 2012-03-07 19:00:00-05:00 -0.496922 2012-03-08 19:00:00-05:00 0.306389 2012-03-09 19:00:00-05:00 -2.290613 Freq: D, dtype: float64
Converting between time span representations
In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M') In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng) In [114]: ts Out[114]: 2012-01-31 -1.134623 2012-02-29 -1.561819 2012-03-31 -0.260838 2012-04-30 0.281957 2012-05-31 1.523962 Freq: M, dtype: float64 In [115]: ps = ts.to_period() In [116]: ps Out[116]: 2012-01 -1.134623 2012-02 -1.561819 2012-03 -0.260838 2012-04 0.281957 2012-05 1.523962 Freq: M, dtype: float64 In [117]: ps.to_timestamp() Out[117]: 2012-01-01 -1.134623 2012-02-01 -1.561819 2012-03-01 -0.260838 2012-04-01 0.281957 2012-05-01 1.523962 Freq: MS, dtype: float64
Converting between period and timestamp enables some convenient arithmeticfunctions to be used. In the following example, we convert a quarterlyfrequency with year ending in November to 9am of the end of the month followingthe quarter end:
In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV') In [119]: ts = pd.Series(np.random.randn(len(prng)), prng) In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9 In [121]: ts.head() Out[121]: 1990-03-01 09:00 -0.902937 1990-06-01 09:00 0.068159 1990-09-01 09:00 -0.057873 1990-12-01 09:00 -0.368204 1991-03-01 09:00 -1.144073 Freq: H, dtype: float64
[pandas-docs/stable/timeseries]
pandas时序类型
pandas 的 TimeStamp
pandas 最基本的时间日期对象是一个从 Series 派生出来的子类 TimeStamp,这个对象与 datetime 对象保有高度兼容性,可通过 pd.to_datetime() 函数转换。(一般是从 datetime 转换为 Timestamp)
lang:python >>> pd.to_datetime(now) Timestamp('2014-06-17 15:56:19.313193', tz=None) >>> pd.to_datetime(np.nan) NaT
pandas 的时间序列
pandas 最基本的时间序列类型就是以时间戳(TimeStamp)为 index 元素的 Series 类型。
lang:python >>> dates = [datetime(2011,1,1),datetime(2011,1,2),datetime(2011,1,3)] >>> ts = Series(np.random.randn(3),index=dates) >>> ts 2011-01-01 0.362289 2011-01-02 0.586695 2011-01-03 -0.154522 dtype: float64 >>> type(ts) <class 'pandas.core.series.Series'> >>> ts.index <class 'pandas.tseries.index.DatetimeIndex'> [2011-01-01, ..., 2011-01-03] Length: 3, Freq: None, Timezone: None >>> ts.index[0] Timestamp('2011-01-01 00:00:00', tz=None)
时间序列之间的算术运算会自动按时间对齐。
索引、选取、子集构造
时间序列只是 index 比较特殊的 Series ,因此一般的索引操作对时间序列依然有效。其特别之处在于对时间序列索引的操作优化。如使用各种字符串进行索引:
lang:python >>> ts['20110101'] 0.36228897878097266 >>> ts['2011-01-01'] 0.36228897878097266 >>> ts['01/01/2011'] 0.36228897878097266
对于较长的序列,还可以只传入 “年” 或 “年月” 选取切片:
lang:python >>> ts 2011-01-01 0.362289 2011-01-02 0.586695 2011-01-03 -0.154522 2012-12-25 0.111869 dtype: float64 >>> ts['2012'] 2012-12-25 0.111869 dtype: float64 >>> ts['2011-1-2':'2012-12'] 2011-01-02 0.586695 2011-01-03 -0.154522 2012-12-25 0.111869 dtype: float64
除了这种字符串切片方式外,还有一种实例方法可用:ts.truncate(after='2011-01-03')。
值得注意的是,切片时使用的字符串时间戳并不必存在于 index 之中,如 ts.truncate(before='3055') 也是合法的。
Time/Date Components
There are several time/date properties that one can access from Timestamp or a collection of timestamps like a DateTimeIndex.
Property | Description |
---|---|
year | The year of the datetime |
month | The month of the datetime |
day | The days of the datetime |
hour | The hour of the datetime |
minute | The minutes of the datetime |
second | The seconds of the datetime |
microsecond | The microseconds of the datetime |
nanosecond | The nanoseconds of the datetime |
date | Returns datetime.date |
time | Returns datetime.time |
dayofyear | The ordinal day of year |
weekofyear | The week ordinal of the year |
week | The week ordinal of the year |
dayofweek | The numer of the day of the week with Monday=0, Sunday=6 |
weekday | The number of the day of the week with Monday=0, Sunday=6 |
weekday_name | The name of the day in a week (ex: Friday) |
quarter | Quarter of the date: Jan=Mar = 1, Apr-Jun = 2, etc. |
days_in_month | The number of days in the month of the datetime |
is_month_start | Logical indicating if first day of month (defined by frequency) |
is_month_end | Logical indicating if last day of month (defined by frequency) |
is_quarter_start | Logical indicating if first day of quarter (defined by frequency) |
is_quarter_end | Logical indicating if last day of quarter (defined by frequency) |
is_year_start | Logical indicating if first day of year (defined by frequency) |
is_year_end | Logical indicating if last day of year (defined by frequency) |
Furthermore, if you have a Series with datetimelike values, then you can access these properties via the .dt accessor, see the docs.
[Time/Date Components¶]
日期的范围、频率以及移动
pandas 中的时间序列一般被默认为不规则的,即没有固定的频率。但出于分析的需要,我们可以通过插值的方式将序列转换为具有固定频率的格式。一种快捷方式是使用 .resample(rule) 方法:
lang:python >>> ts 2011-01-01 0.362289 2011-01-02 0.586695 2011-01-03 -0.154522 2011-01-06 0.222958 dtype: float64 >>> ts.resample('D') 2011-01-01 0.362289 2011-01-02 0.586695 2011-01-03 -0.154522 2011-01-04 NaN 2011-01-05 NaN 2011-01-06 0.222958 Freq: D, dtype: float64
生成日期范围
pd.date_range() 可用于生成指定长度的 DatetimeIndex。参数可以是起始结束日期,或单给一个日期,加一个时间段参数。日期是包含的。
lang:python >>> pd.date_range('20100101','20100110') <class 'pandas.tseries.index.DatetimeIndex'> [2010-01-01, ..., 2010-01-10] Length: 10, Freq: D, Timezone: None >>> pd.date_range(start='20100101',periods=10) <class 'pandas.tseries.index.DatetimeIndex'> [2010-01-01, ..., 2010-01-10] Length: 10, Freq: D, Timezone: None >>> pd.date_range(end='20100110',periods=10) <class 'pandas.tseries.index.DatetimeIndex'> [2010-01-01, ..., 2010-01-10] Length: 10, Freq: D, Timezone: None
默认情况下,date_range 会按天计算时间点。这可以通过 freq 参数进行更改,如 “BM” 代表 bussiness end of month。
lang:python >>> pd.date_range('20100101','20100601',freq='BM') <class 'pandas.tseries.index.DatetimeIndex'> [2010-01-29, ..., 2010-05-31] Length: 5, Freq: BM, Timezone: None
频率和日期偏移量
pandas 中的频率是由一个基础频率和一个乘数组成的。基础频率通常以一个字符串别名表示,如上例中的 “BM”。对于每个基础频率,都有一个被称为日期偏移量(date offset)的对象与之对应。可以通过实例化日期偏移量来创建某种频率:
lang:python >>> Hour() <Hour> >>> Hour(2) <2 * Hours> >>> Hour(1) + Minute(30) <90 * Minutes>
但一般来说不必这么麻烦,使用前面提过的字符串别名来创建频率就可以了:
lang:python >>> pd.date_range('00:00','12:00',freq='1h20min') <class 'pandas.tseries.index.DatetimeIndex'> [2014-06-17 00:00:00, ..., 2014-06-17 12:00:00] Length: 10, Freq: 80T, Timezone: None
可用的别名,可以通过 help() 或 文档来查询,这里就不写了。
移动(超前和滞后)数据
移动(shifting)指的是沿着时间轴将数据前移或后移。Series 和 DataFrame 都有一个 .shift() 方法用于执行单纯的移动操作,index 维持不变:
lang:python >>> ts 2011-01-01 0.362289 2011-01-02 0.586695 2011-01-03 -0.154522 2011-01-06 0.222958 dtype: float64 >>> ts.shift(2) 2011-01-01 NaN 2011-01-02 NaN 2011-01-03 0.362289 2011-01-06 0.586695 dtype: float64 >>> ts.shift(-2) 2011-01-01 -0.154522 2011-01-02 0.222958 2011-01-03 NaN 2011-01-06 NaN dtype: float64
上例中因为移动操作产生了 NA 值,另一种移动方法是移动 index,而保持数据不变。这种移动方法需要额外提供一个 freq 参数来指定移动的频率:
lang:python >>> ts.shift(2,freq='D') 2011-01-03 0.362289 2011-01-04 0.586695 2011-01-05 -0.154522 2011-01-08 0.222958 dtype: float64 >>> ts.shift(2,freq='3D') 2011-01-07 0.362289 2011-01-08 0.586695 2011-01-09 -0.154522 2011-01-12 0.222958 dtype: float64
时期及其算术运算
本节使用的时期(period)概念不同于前面的时间戳(timestamp),指的是一个时间段。但在使用上并没有太多不同,pd.Period 类的构造函数仍需要一个时间戳,以及一个 freq 参数。freq 用于指明该 period 的长度,时间戳则说明该 period 在公园时间轴上的位置。
lang:python >>> p = pd.Period(2010,freq='M') >>> p Period('2010-01', 'M') >>> p + 2 Period('2010-03', 'M')
上例中我给 period 的构造器传了一个 “年” 单位的时间戳和一个 “Month” 的 freq,pandas 便自动把 2010 解释为了 2010-01。
period_range 函数可用于创建规则的时间范围:
lang:python >>> pd.period_range('2010-01','2010-05',freq='M') <class 'pandas.tseries.period.PeriodIndex'> freq: M [2010-01, ..., 2010-05] length: 5
PeriodIndex 类保存了一组 period,它可以在任何 pandas 数据结构中被用作轴索引:
lang:python >>> Series(np.random.randn(5),index=pd.period_range('201001','201005',freq='M')) 2010-01 0.755961 2010-02 -1.074492 2010-03 -0.379719 2010-04 0.153662 2010-05 -0.291157 Freq: M, dtype: float64
时期的频率转换
Period 和 PeriodIndex 对象都可以通过其 .asfreq(freq, method=None, how=None) 方法被转换成别的频率。
lang:python >>> p = pd.Period('2007',freq='A-DEC') >>> p.asfreq('M',how='start') Period('2007-01', 'M') >>> p.asfreq('M',how='end') Period('2007-12', 'M') >>> ts = Series(np.random.randn(1),index=[p]) >>> ts 2007 -0.112347 Freq: A-DEC, dtype: float64 >>> ts.asfreq('M',how='start') 2007-01 -0.112347 Freq: M, dtype: float64
时间戳与时期间相互转换
以时间戳和以时期为 index 的 Series 和 DataFrame 都有一对 .to_period() 和 to_timestamp(how='start') 方法用于互相转换 index 的类型。因为从 period 到 timestamp 的转换涉及到一个取端值的问题,所以需要一个额外的 how 参数,默认为 'start':
lang:python >>> ts = Series(np.random.randn(5),index=pd.period_range('201001','201005',freq='M')) >>> ts 2010-01 -0.312160 2010-02 0.962652 2010-03 -0.959478 2010-04 1.240236 2010-05 -0.916218 Freq: M, dtype: float64 >>> ts.to_timestamp() 2010-01-01 -0.312160 2010-02-01 0.962652 2010-03-01 -0.959478 2010-04-01 1.240236 2010-05-01 -0.916218 Freq: MS, dtype: float64 >>> ts.to_timestamp(how='end') 2010-01-31 -0.312160 2010-02-28 0.962652 2010-03-31 -0.959478 2010-04-30 1.240236 2010-05-31 -0.916218 Freq: M, dtype: float64 >>> ts.to_timestamp().to_period() 2010-01-01 00:00:00.000 -0.312160 2010-02-01 00:00:00.000 0.962652 2010-03-01 00:00:00.000 -0.959478 2010-04-01 00:00:00.000 1.240236 2010-05-01 00:00:00.000 -0.916218 Freq: L, dtype: float64 >>> ts.to_timestamp().to_period('M') 2010-01 -0.312160 2010-02 0.962652 2010-03 -0.959478 2010-04 1.240236 2010-05 -0.916218 Freq: M, dtype: float64
重采样及频率转换
重采样(resampling)指的是将时间序列从一个频率转换到另一个频率的过程。pandas 对象都含有一个.resample(freq, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0) 方法用于实现这个过程。
本篇最前面曾用 resample 规整化过时间序列。当时进行的是插值操作,因为原索引的频率与给出的 freq 参数相同。resample 方法更多的应用场合是 freq 发生改变的时候,这时操作就分为升采样(upsampling)和降采样(downsampling)两种。具体的区别都体现在参数里。
lang:python >>> ts 2010-01 -0.312160 2010-02 0.962652 2010-03 -0.959478 2010-04 1.240236 2010-05 -0.916218 Freq: M, dtype: float64 >>> ts.resample('D',fill_method='ffill')#升采样 2010-01-01 -0.31216 2010-01-02 -0.31216 2010-01-03 -0.31216 2010-01-04 -0.31216 2010-01-05 -0.31216 2010-01-06 -0.31216 2010-01-07 -0.31216 2010-01-08 -0.31216 2010-01-09 -0.31216 2010-01-10 -0.31216 2010-01-11 -0.31216 2010-01-12 -0.31216 2010-01-13 -0.31216 2010-01-14 -0.31216 2010-01-15 -0.31216 ... 2010-05-17 -0.916218 2010-05-18 -0.916218 2010-05-19 -0.916218 2010-05-20 -0.916218 2010-05-21 -0.916218 2010-05-22 -0.916218 2010-05-23 -0.916218 2010-05-24 -0.916218 2010-05-25 -0.916218 2010-05-26 -0.916218 2010-05-27 -0.916218 2010-05-28 -0.916218 2010-05-29 -0.916218 2010-05-30 -0.916218 2010-05-31 -0.916218 Freq: D, Length: 151 >>> ts.resample('A-JAN',how='sum')#降采样 2010 -0.312160 2011 0.327191 Freq: A-JAN, dtype: float64
from: http://blog.csdn.net/pipisorry/article/details/52209377
ref: [时间序列预测全攻略(附带Python代码)]
[Complete guide to create a Time Series Forecast (with Codes in Python)]