Alice and Bob HDU - 4111 (SG函数)

时间:2021-10-14 14:05:44
Alice and Bob are very smart guys and they like to play all kinds of games in their spare time. The most amazing thing is that they always find the best strategy, and that's why they feel bored again and again. They just invented a new game, as they usually did. 
The rule of the new game is quite simple. At the beginning of the game, they write down N random positive integers, then they take turns (Alice first) to either: 
1. Decrease a number by one. 
2. Erase any two numbers and write down their sum. 
Whenever a number is decreased to 0, it will be erased automatically. The game ends when all numbers are finally erased, and the one who cannot play in his(her) turn loses the game. 
Here's the problem: Who will win the game if both use the best strategy? Find it out quickly, before they get bored of the game again!

InputThe first line contains an integer T(1 <= T <= 4000), indicating the number of test cases. 
Each test case contains several lines. 
The first line contains an integer N(1 <= N <= 50). 
The next line contains N positive integers A 1 ....A N(1 <= A i <= 1000), represents the numbers they write down at the beginning of the game.OutputFor each test case in the input, print one line: "Case #X: Y", where X is the test case number (starting with 1) and Y is either "Alice" or "Bob".

Sample Input

3
3
1 1 2
2
3 4
3
2 3 5

Sample Output

Case #1: Alice
Case #2: Bob
Case #3: Bob 给出 n 个数,每次有两种操作
1、任意取一个数字,让他减一
2、把两个数字合并起来
最后不能操作的人失败 考虑全部不合并和全部合并的情况,操作次数的范围是[∑a, ∑a + n - 1]。
如果每一堆石子全部大于1, ∑a + n - 1 就是先手能否赢。 因为如果这是一个奇数,后手想赢必须让其中一堆没有参与到合并,那么后手一定要让这一堆进行操作1,由于全部大于1,那么不可能一步完成,先手只要每次把这堆合并起来就一定能赢。
反之同理,偶数时后手用同样的方法限制先手,后手一定能赢。
那么考虑有 1 的时候,如果这时候一方想要减少合并次数,只需要把 1 进行操作1,另一方无法阻止。则把 1 单独拿出来。
用 sg[i][j] 表示有 i 个 1 ,除了 1 以外剩余堆可以进行的最多的操作次数。然后开始操作
(1)、在 i 里面进行操作1
(2)、在 j 里面进行操作1
(3)、让 i 和 j 进行操作2
(4)、让 i 和 i 进行操作2
然后进行转移就可以了
然后其中的细节差不多有如下
1、当 i == 0时,j 的奇偶进就决定了能否赢
2、在(2)中,如果 j==2,会转化一个到 i,自己变成0,变成sg[i+1][0]; 如果j>2,正常转化,sg[i+1][j-1];
3、在(4)中,如果 j==0,转化出来为sg[i-2][2]; 如果 j>0,那么合并出来的新堆可以之前的 j 在合并一次,所以是sg[i-2][j+3]
/*
.
';;;;;.
'!;;;;;;!;`
'!;|&#@|;;;;!:
`;;!&####@|;;;;!:
.;;;!&@$$%|!;;;;;;!'.`:::::'.
'!;;;;;;;;!$@###&|;;|%!;!$|;;;;|&&;.
:!;;;;!$@&%|;;;;;;;;;|!::!!:::;!$%;!$%` '!%&#########@$!:.
;!;;!!;;;;;|$$&@##$;;;::'''''::;;;;|&|%@$|;;;;;;;;;;;;;;;;!$;
;|;;;;;;;;;;;;;;;;;;!%@#####&!:::;!;;;;;;;;;;!&####@%!;;;;$%`
`!!;;;;;;;;;;!|%%|!!;::;;|@##%|$|;;;;;;;;;;;;!|%$#####%;;;%&;
:@###&!:;;!!||%%%%%|!;;;;;||;;;;||!$&&@@%;;;;;;;|$$##$;;;%@|
;|::;;;;;;;;;;;;|&&$|;;!$@&$!;;;;!;;;;;;;;;;;;;;;;!%|;;;%@%.
`!!;;;;;;;!!!!;;;;;$@@@&&&&&@$!;!%|;;;;!||!;;;;;!|%%%!;;%@|.
%&&$!;;;;;!;;;;;;;;;;;|$&&&&&&&&&@@%!%%;!||!;;;;;;;;;;;;;$##!
!%;;;;;;!%!:;;;;;;;;;;!$&&&&&&&&&&@##&%|||;;;!!||!;;;;;;;$&:
':|@###%;:;;;;;;;;;;;;!%$&&&&&&@@$!;;;;;;;!!!;;;;;%&!;;|&%.
!@|;;;;;;;;;;;;;;;;;;|%|$&&$%&&|;;;;;;;;;;;;!;;;;;!&@@&'
.:%#&!;;;;;;;;;;;;;;!%|$$%%&@%;;;;;;;;;;;;;;;;;;;!&@:
.%$;;;;;;;;;;;;;;;;;;|$$$$@&|;;;;;;;;;;;;;;;;;;;;%@%.
!&!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;|@#;
`%$!;;;;;;;;;;;$@|;;;;;;;;;;;;;;;;;;;;;;;;!%$@#@|.
.|@%!;;;;;;;;;!$&%||;;;;;;;;;;;;;;;;;!%$$$$$@#|.
;&$!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%#####|.
|##$|!;;;;;;::'':;;;;;;;;;;;;;!%$$$@#@;
;@&|;;;;;;;::'''''':;;;;;;;|$&@###@|`
.%##@|;;;;:::''''''''''::;!%&##$'
`$##@$$@@&|!!;;;:'''''::::;;;;;|&#%.
;&@##&$%!;;;;;;::''''''''::;!|%$@#@&@@:
.%@&$$|;;;;;;;;;;:'''':''''::;;;%@#@@#%.
:@##@###@$$$$$|;;:'''':;;!!;;;;;;!$#@@#$;`
`%@$$|;;;;;;;;:'''''''::;;;;|%$$|!!&###&'
|##&%!;;;;;::''''''''''''::;;;;;;;!$@&:`!'
:;!@$|;;;;;;;::''''''''''':;;;;;;;;!%&@$: !@#$'
|##@@&%;;;;;::''''''''':;;;;;;;!%&@#@$%: '%%!%&;
|&%!;;;;;;;%$!:''''''':|%!;;;;;;;;|&@%||` '%$|!%&;
|@%!;;!!;;;||;:'''''':;%$!;;;;!%%%&#&%$&: .|%;:!&%`
!@&%;;;;;;;||;;;:''::;;%$!;;;;;;;|&@%;!$; `%&%!!$&:
'$$|;!!!!;;||;;;;;;;;;;%%;;;;;;;|@@|!$##; !$!;:!$&:
|#&|;;;;;;!||;;;;;;;;!%|;;;;!$##$;;;;|%' `%$|%%;|&$'
|&%!;;;;;;|%;;;;;;;;$$;;;;;;|&&|!|%&&; .:%&$!;;;:!$@!
`%#&%!!;;;;||;;;;;!$&|;;;!%%%@&!;;;!!;;;|%!;;%@$!%@!
!&!;;;;;;;;;||;;%&!;;;;;;;;;%@&!;;!&$;;;|&%;;;%@%`
'%|;;;;;;;;!!|$|%&%;;;;;;;;;;|&#&|!!||!!|%$@@|'
.!%%&%'`|$; :|$#%|@#&;%#%.
*/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 5e4 + ;
const int maxm = 1e5 + ;
const ll mod = 1e9 + ;
const ll INF = 1e18 + ;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-;
using namespace std; int n, m;
int cas, tol, T; int sg[][maxn]; void dfs(int x, int y) {
if(sg[x][y] != -) return ;
if(x == ) {
sg[x][y] = y&;
return ;
}
if(x) {
dfs(x-, y);
if(sg[x-][y] == ) {
sg[x][y] = ;
return ;
}
}
if(y) {
dfs(x-, y+);
if(sg[x-][y+] == ) {
sg[x][y] = ;
return ;
}
}
if(x > ) {
if(y) {
dfs(x-, y+);
if(sg[x-][y+] == ) {
sg[x][y] = ;
return ;
}
} else {
dfs(x-, );
if(sg[x-][] == ) {
sg[x][y] = ;
return ;
}
}
}
if(y > ) {
if(y > ) {
dfs(x, y-);
if(sg[x][y-] == ) {
sg[x][y] = ;
return ;
}
} else {
dfs(x+, );
if(sg[x+][] == ) {
sg[x][y] = ;
return ;
}
}
}
sg[x][y] = ;
return ;
} int main() {
mes(sg, -);
sg[][] = ;
cas = ;
scanf("%d", &T);
while(T--) {
int ans = , cnt = ;
scanf("%d", &n);
for(int i=, x; i<=n; i++) {
scanf("%d", &x);
if(x > )
ans += x+;
else
cnt++;
}
if(ans)
ans--;
if(sg[cnt][ans] == -)
dfs(cnt, ans);
printf("Case #%d: %s\n", cas++, sg[cnt][ans] ? "Alice" : "Bob");
}
return ;
}