算法流程:
- 将图像转换为灰度图像
- 利用Sobel滤波器求出 海森矩阵 (Hessian matrix) :
- 将高斯滤波器分别作用于Ix²、Iy²、IxIy
- 计算每个像素的 R= det(H) - k(trace(H))²。det(H)表示矩阵H的行列式,trace表示矩阵H的迹。通常k的取值范围为[0.04,0.16]。
- 满足 R>=max(R) * th 的像素点即为角点。th常取0.1。
Harris算法实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
# Harris corner detection
def Harris_corner(img):
## Grayscale
def BGR2GRAY(img):
gray = 0.2126 * img[..., 2 ] + 0.7152 * img[..., 1 ] + 0.0722 * img[..., 0 ]
gray = gray.astype(np.uint8)
return gray
## Sobel
def Sobel_filtering(gray):
# get shape
H, W = gray.shape
# sobel kernel
sobely = np.array((( 1 , 2 , 1 ),
( 0 , 0 , 0 ),
( - 1 , - 2 , - 1 )), dtype = np.float32)
sobelx = np.array((( 1 , 0 , - 1 ),
( 2 , 0 , - 2 ),
( 1 , 0 , - 1 )), dtype = np.float32)
# padding
tmp = np.pad(gray, ( 1 , 1 ), 'edge' )
# prepare
Ix = np.zeros_like(gray, dtype = np.float32)
Iy = np.zeros_like(gray, dtype = np.float32)
# get differential
for y in range (H):
for x in range (W):
Ix[y, x] = np.mean(tmp[y : y + 3 , x : x + 3 ] * sobelx)
Iy[y, x] = np.mean(tmp[y : y + 3 , x : x + 3 ] * sobely)
Ix2 = Ix * * 2
Iy2 = Iy * * 2
Ixy = Ix * Iy
return Ix2, Iy2, Ixy
# gaussian filtering
def gaussian_filtering(I, K_size = 3 , sigma = 3 ):
# get shape
H, W = I.shape
## gaussian
I_t = np.pad(I, (K_size / / 2 , K_size / / 2 ), 'edge' )
# gaussian kernel
K = np.zeros((K_size, K_size), dtype = np. float )
for x in range (K_size):
for y in range (K_size):
_x = x - K_size / / 2
_y = y - K_size / / 2
K[y, x] = np.exp( - (_x * * 2 + _y * * 2 ) / ( 2 * (sigma * * 2 )))
K / = (sigma * np.sqrt( 2 * np.pi))
K / = K. sum ()
# filtering
for y in range (H):
for x in range (W):
I[y,x] = np. sum (I_t[y : y + K_size, x : x + K_size] * K)
return I
# corner detect
def corner_detect(gray, Ix2, Iy2, Ixy, k = 0.04 , th = 0.1 ):
# prepare output image
out = np.array((gray, gray, gray))
out = np.transpose(out, ( 1 , 2 , 0 ))
# get R
R = (Ix2 * Iy2 - Ixy * * 2 ) - k * ((Ix2 + Iy2) * * 2 )
# detect corner
out[R > = np. max (R) * th] = [ 255 , 0 , 0 ]
out = out.astype(np.uint8)
return out
# 1. grayscale
gray = BGR2GRAY(img)
# 2. get difference image
Ix2, Iy2, Ixy = Sobel_filtering(gray)
# 3. gaussian filtering
Ix2 = gaussian_filtering(Ix2, K_size = 3 , sigma = 3 )
Iy2 = gaussian_filtering(Iy2, K_size = 3 , sigma = 3 )
Ixy = gaussian_filtering(Ixy, K_size = 3 , sigma = 3 )
# 4. corner detect
out = corner_detect(gray, Ix2, Iy2, Ixy)
return out
# Read image
img = cv.imread( "../qiqiao.jpg" ).astype(np.float32)
# Harris corner detection
out = Harris_corner(img)
cv.imwrite( "out.jpg" , out)
cv.imshow( "result" , out)
cv.waitKey( 0 )
cv.destroyAllWindows()
|
实验结果:
原图:
Harris角点检测算法检测结果:
以上就是python 实现Harris角点检测算法的详细内容,更多关于python Harris角点检测算法的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/wojianxin/p/12574909.html