Pytorch可视化的几种实现方法

时间:2022-11-21 17:33:06

一,利用 tensorboardX 可视化网络结构

参考 https://github.com/lanpa/tensorboardX
支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_curve and video summaries.
例子要求tensorboardX>=1.2 and pytorch>=0.4

安装

pip install tensorboardXpip install git+https://github.com/lanpa/tensorboardX

例子

# demo.py

import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter

resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]

for n_iter in range(100):

    dummy_s1 = torch.rand(1)
    dummy_s2 = torch.rand(1)
    # data grouping by `slash`
    writer.add_scalar("data/scalar1", dummy_s1[0], n_iter)
    writer.add_scalar("data/scalar2", dummy_s2[0], n_iter)

    writer.add_scalars("data/scalar_group", {"xsinx": n_iter * np.sin(n_iter),
                                             "xcosx": n_iter * np.cos(n_iter),
                                             "arctanx": np.arctan(n_iter)}, n_iter)

    dummy_img = torch.rand(32, 3, 64, 64)  # output from network
    if n_iter % 10 == 0:
        x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
        writer.add_image("Image", x, n_iter)

        dummy_audio = torch.zeros(sample_rate * 2)
        for i in range(x.size(0)):
            # amplitude of sound should in [-1, 1]
            dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
        writer.add_audio("myAudio", dummy_audio, n_iter, sample_rate=sample_rate)

        writer.add_text("Text", "text logged at step:" + str(n_iter), n_iter)

        for name, param in resnet18.named_parameters():
            writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)

        # needs tensorboard 0.4RC or later
        writer.add_pr_curve("xoxo", np.random.randint(2, size=100), np.random.rand(100), n_iter)

dataset = datasets.MNIST("mnist", train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]

features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))

# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()

运行: python demo.py 会出现runs文件夹,然后在cd到工程目录运行tensorboard --logdir runs

结果:

Pytorch可视化的几种实现方法

二,利用 vistom 可视化

参考:https://github.com/facebookresearch/visdom

安装和启动
安装: pip install visdom
启动:python -m visdom.server示例

    from visdom import Visdom
    #单张
    viz.image(
        np.random.rand(3, 512, 256),
        opts=dict(title=\"Random!\", caption=\"How random.\"),
    )
    #多张
    viz.images(
        np.random.randn(20, 3, 64, 64),
        opts=dict(title=\"Random images\", caption=\"How random.\")
    )

Pytorch可视化的几种实现方法

from visdom import Visdom

image = np.zeros((100,100))
vis = Visdom() 
vis.text("hello world!!!")
vis.image(image)
vis.line(Y = np.column_stack((np.random.randn(10),np.random.randn(10))), 
         X = np.column_stack((np.arange(10),np.arange(10))),
         opts = dict(title = "line", legend=["Test","Test1"]))

Pytorch可视化的几种实现方法

三,利用pytorchviz可视化网络结构

参考:https://github.com/szagoruyko/pytorchviz

到此这篇关于Pytorch可视化的几种实现方法的文章就介绍到这了,更多相关Pytorch可视化内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文链接:https://blog.csdn.net/sz793919425/article/details/84305669