SVD是矩阵分解常用的方法,其原理为:矩阵M可以写成矩阵A、B与C相乘得到,而B可以与A或者C合并,就变成了两个元素M1与M2的矩阵相乘可以得到M。
矩阵分解推荐的思想就是基于此,将每个user和item的内在feature构成的矩阵分别表示为M1与M2,则内在feature的乘积得到M;因此我们可以利用已有数据(user对item的打分)通过随机梯度下降的方法计算出现有user和item最可能的feature对应到的M1与M2(相当于得到每个user和每个item的内在属性),这样就可以得到通过feature之间的内积得到user没有打过分的item的分数。
本文所采用的数据是movielens中的数据,且自行切割成了train和test,但是由于数据量较大,没有用到全部数据。
代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 9 19:33:00 2017
@author: wjw
"""
import pandas as pd
import numpy as np
import os
def difference(left,right,on): #求两个dataframe的差集
df = pd.merge(left,right,how = 'left' ,on = on) #参数on指的是用于连接的列索引名称
left_columns = left.columns
col_y = df.columns[ - 1 ] # 得到最后一列
df = df[df[col_y].isnull()] #得到boolean的list
df = df.iloc[:, 0 :left_columns.size] #得到的数据里面还有其他同列名的column
df.columns = left_columns # 重新定义columns
return df
def readfile(filepath): #读取文件,同时得到训练集和测试集
pwd = os.getcwd() #返回当前工程的工作目录
os.chdir(os.path.dirname(filepath))
#os.path.dirname()获得filepath文件的目录;chdir()切换到filepath目录下
initialData = pd.read_csv(os.path.basename(filepath))
#basename()获取指定目录的相对路径
os.chdir(pwd) #回到先前工作目录下
predData = initialData.iloc[:, 0 : 3 ] #将最后一列数据去掉
newIndexData = predData.drop_duplicates()
trainData = newIndexData.sample(axis = 0 ,frac = 0.1 ) #90%的数据作为训练集
testData = difference(newIndexData,trainData,[ 'userId' , 'movieId' ]).sample(axis = 0 ,frac = 0.1 )
return trainData,testData
def getmodel(train):
slowRate = 0.99
preRmse = 10000000.0
max_iter = 100
features = 3
lamda = 0.2
gama = 0.01 #随机梯度下降中加入,防止更新过度
user = pd.DataFrame(train.userId.drop_duplicates(),columns = [ 'userId' ]).reset_index(drop = True ) #把在原来dataFrame中的索引重新设置,drop=True并抛弃
movie = pd.DataFrame(train.movieId.drop_duplicates(),columns = [ 'movieId' ]).reset_index(drop = True )
userNum = user.count().loc[ 'userId' ] #671
movieNum = movie.count().loc[ 'movieId' ]
userFeatures = np.random.rand(userNum,features) #构造user和movie的特征向量集合
movieFeatures = np.random.rand(movieNum,features)
#假设每个user和每个movie有3个feature
userFeaturesFrame = user.join(pd.DataFrame(userFeatures,columns = [ 'f1' , 'f2' , 'f3' ]))
movieFeaturesFrame = movie.join(pd.DataFrame(movieFeatures,columns = [ 'f1' , 'f2' , 'f3' ]))
userFeaturesFrame = userFeaturesFrame.set_index( 'userId' )
movieFeaturesFrame = movieFeaturesFrame.set_index( 'movieId' ) #重新设置index
for i in range (max_iter):
rmse = 0
n = 0
for index,row in user.iterrows():
uId = row.userId
userFeature = userFeaturesFrame.loc[uId] #得到userFeatureFrame中对应uId的feature
u_m = train[train[ 'userId' ] = = uId] #找到在train中userId点评过的movieId的data
for index,row in u_m.iterrows():
u_mId = int (row.movieId)
realRating = row.rating
movieFeature = movieFeaturesFrame.loc[u_mId]
eui = realRating - np.dot(userFeature,movieFeature)
rmse + = pow (eui, 2 )
n + = 1
userFeaturesFrame.loc[uId] + = gama * (eui * movieFeature - lamda * userFeature)
movieFeaturesFrame.loc[u_mId] + = gama * (eui * userFeature - lamda * movieFeature)
nowRmse = np.sqrt(rmse * 1.0 / n)
print ( 'step:%f,rmse:%f' % ((i + 1 ),nowRmse))
if nowRmse<preRmse:
preRmse = nowRmse
elif nowRmse< 0.5 :
break
elif nowRmse - preRmse< = 0.001 :
break
gama * = slowRate
return userFeaturesFrame,movieFeaturesFrame
def evaluate(userFeaturesFrame,movieFeaturesFrame,test):
test[ 'predictRating' ] = 'NAN' # 新增一列
for index,row in test.iterrows():
print (index)
userId = row.userId
movieId = row.movieId
if userId not in userFeaturesFrame.index or movieId not in movieFeaturesFrame.index:
continue
userFeature = userFeaturesFrame.loc[userId]
movieFeature = movieFeaturesFrame.loc[movieId]
test.loc[index, 'predictRating' ] = np.dot(userFeature,movieFeature) #不定位到不能修改值
return test
if __name__ = = "__main__" :
filepath = r "E:\学习\研究生\推荐系统\ml-latest-small\ratings.csv"
train,test = readfile(filepath)
userFeaturesFrame,movieFeaturesFrame = getmodel(train)
result = evaluate(userFeaturesFrame,movieFeaturesFrame,test)
|
在test中得到的结果为:
NAN则是训练集中没有的数据
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/ge_nious/article/details/78205365