2
3 评分矩阵R如下
4
5 D1 D2 D3 D4
6
7 U1 5 3 - 1
8
9 U2 4 - - 1
10
11 U3 1 1 - 5
12
13 U4 1 - - 4
14
15 U5 - 1 5 4
16
17 ***/
18
19 #include<iostream>
20
21 #include<cstdio>
22
23 #include<cstdlib>
24
25 #include<cmath>
26
27 using namespace std;
28
29
30
31 void matrix_factorization(double *R,double *P,double *Q,int N,int M,int K,int steps=5000,float alpha=0.0002,float beta=0.02)
32
33 {
34
35 for(int step =0;step<steps;++step)
36
37 {
38
39 for(int i=0;i<N;++i)
40
41 {
42
43 for(int j=0;j<M;++j)
44
45 {
46
47 if(R[i*M+j]>0)
48
49 {
50
51 //这里面的error 就是公式6里面的e(i,j)
52
53 double error = R[i*M+j];
54
55 for(int k=0;k<K;++k)
56
57 error -= P[i*K+k]*Q[k*M+j];
58
59
60
61 //更新公式6
62
63 for(int k=0;k<K;++k)
64
65 {
66
67 P[i*K+k] += alpha * (2 * error * Q[k*M+j] - beta * P[i*K+k]);
68
69 Q[k*M+j] += alpha * (2 * error * P[i*K+k] - beta * Q[k*M+j]);
70
71 }
72
73 }
74
75 }
76
77 }
78
79 double loss=0;
80
81 //计算每一次迭代后的,loss大小,也就是原来R矩阵里面每一个非缺失值跟预测值的平方损失
82
83 for(int i=0;i<N;++i)
84
85 {
86
87 for(int j=0;j<M;++j)
88
89 {
90
91 if(R[i*M+j]>0)
92
93 {
94
95 double error = 0;
96
97 for(int k=0;k<K;++k)
98
99 error += P[i*K+k]*Q[k*M+j];
100
101 loss += pow(R[i*M+j]-error,2);
102
103 for(int k=0;k<K;++k)
104
105 loss += (beta/2) * (pow(P[i*K+k],2) + pow(Q[k*M+j],2));
106
107 }
108
109 }
110
111 }
112
113 if(loss<0.001)
114
115 break;
116
117 if (step%1000==0)
118
119 cout<<"loss:"<<loss<<endl;
120
121 }
122
123 }
124
125
126
127 int main(int argc,char ** argv)
128
129 {
130
131 int N=5; //用户数
132
133 int M=4; //物品数
134
135 int K=2; //主题个数
136
137 double *R=new double[N*M];
138
139 double *P=new double[N*K];
140
141 double *Q=new double[M*K];
142
143 R[0]=5,R[1]=3,R[2]=0,R[3]=1,R[4]=4,R[5]=0,R[6]=0,R[7]=1,R[8]=1,R[9]=1;
144
145 R[10]=0,R[11]=5,R[12]=1,R[13]=0,R[14]=0,R[15]=4,R[16]=0,R[17]=1,R[18]=5,R[19]=4;
146
147
148
149 cout<< "R矩阵" << endl;
150
151 for(int i=0;i<N;++i)
152
153 {
154
155 for(int j=0;j<M;++j)
156
157 cout<< R[i*M+j]<<',';
158
159 cout<<endl;
160
161 }
162
163
164
165 //初始化P,Q矩阵,这里简化了,通常也可以对服从正态分布的数据进行随机数生成
166
167 srand(1);
168
169 for(int i=0;i<N;++i)
170
171 for(int j=0;j<K;++j)
172
173 P[i*K+j]=rand()%9;
174
175
176
177 for(int i=0;i<K;++i)
178
179 for(int j=0;j<M;++j)
180
181 Q[i*M+j]=rand()%9;
182
183 cout <<"矩阵分解 开始" << endl;
184
185 matrix_factorization(R,P,Q,N,M,K);
186
187 cout <<"矩阵分解 结束" << endl;
188
189
190
191 cout<< "重构出来的R矩阵" << endl;
192
193 for(int i=0;i<N;++i)
194
195 {
196
197 for(int j=0;j<M;++j)
198
199 {
200
201 double temp=0;
202
203 for (int k=0;k<K;++k)
204
205 temp+=P[i*K+k]*Q[k*M+j];
206
207 cout<<temp<<',';
208
209 }
210
211 cout<<endl;
212
213 }
214
215 free(P),free(Q),free(R);
216
217 return 0;
218
219 }
执行的结果如下图所示,
三,展望 前两个部分,已经简单的介绍了最基本的基于矩阵分解的推荐算法,基于该算法的一些变种,类似svd++,pmf等,都是针对某一些特定的数据场景进行的一些改进,那有没有统一的框架来整合这些场景呢??前两年在KDDcup大赛,大出风头的Factorization Machine(FM),其中FM的核心理论在于用Factorization来刻画feature跟feature之间的关系,如下面公式 <Vi,Vj>正是刻画了xi,xj的关系,上面式子可以理解为FM=SVM+Factorization Methods,后续准备开一篇博文,来阐释FM模型,跟其作者开源的LibFM工具箱,最后贴一张八卦的图,图中讲的是bickson(graphlab/graphchi的里面推荐工具包的作者),在一次会议上,对steffen(libfm的作者)问的一个问题 四,后续计划 1),介绍FM模型 2),LibFM源码剖析 参考资料 1),bickson.blogspot.com/2012/08/steffen-rendle-libfm.html 2),S. Rendle.Factorization machines.In Proceedings of the 10th IEEE International Conference on Data Mining. IEEE Computer Society, 2010. 3), http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-implementation-in-python/本文链接: 基于矩阵分解的推荐算法,简单入门,转载请注明。
相关 [矩阵分解 推荐算法 kobeshow] 推荐:
基于矩阵分解的推荐算法,简单入门 - kobeshow
- - 博客园_首页 本文将要讨论基于矩阵分解的推荐算法,这一类型的算法通常会有很高的预测精度,也活跃于各大推荐系统竞赛上面,前段时间的百度电影推荐最终结果的前10名貌似都是把矩阵分解作为一个单模型,最后各种ensemble,不知道正在进行的阿里推荐比赛( http://102.alibaba.com/competition/addDiscovery/index.htm),会不会惊喜出现.矩阵分解的Jungle
- SuperLucky - 增强视觉 | 计算机视觉 增强现实美帝的法国貌似是美法混血的有心人士(此有心人士长期从事航天飞机研究. )收集了市面上的矩阵分解的几乎所有算法和应用,由于源地址在某神秘物质之外,特转载过来,源地址. Matrix Decompositions has a long history and generally centers around a set of known factorizations such as LU, QR, SVD and eigendecompositions.矩阵分解在推荐系统中的应用(转)
- -本文将简单介绍下最近学习到的矩阵分解方法. 开始觉得这种方法很神奇很数学,而且在实际使用的时候也非常好用. 但最近读了Yehuda大神的paper之后,觉得这种方法比较猥琐. 其实,矩阵分解的核心是将一个非常稀疏的评分矩阵分解为两个矩阵,一个表示user的特性,一个表示item的特性,将两个矩阵中各取一行和一列向量做内积就可以得到对应评分.社会化推荐算法
- - CSDN博客云计算推荐文章本文是论文《一种结合推荐对象间关联关系的社会化推荐算法》(以下简称论文)的笔记(下). 该论文提出的算法是以PMF为框架基础的. 因而若对PMF不太了解的话,可以参考我的 上一篇文章脑补一下,当然,那篇文章只是概述,详细了解PMF还需要阅读初始论文,但读完那篇文章后,对本文的理解应该没有问题. 所谓社会化推荐算法,是将社交网络的特性加入到推荐系统中来.常用推荐算法
- - 互联网 - ITeye博客 在推荐系统简介中,我们给出了推荐系统的一般框架. 很明显,推荐方法是整个推荐系统中最核心、最关键的部分,很大程度上决定了推荐系统性能的优劣. 目前,主要的推荐方法包括:基于内容推荐、协同过滤推荐、基于关联规则推荐、基于效用推荐、基于知识推荐和组合推荐. 基 于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机 器学习的方法从关于内容的特征描述的事例中得到用户的兴趣资料.解析移动游戏运营数据分析指标 - kobeshow
- - 博客园_首页 在平常的工作中,经常会有一些马虎的数据分析师,接到业务方提到的需求后,大致扫一遍然后就吭叽吭叽做起来,最后出的分析结果报告交给业务方后没多久就打回来,说不是他想要结果,仔细一讨论发现双方的指标定义不一致,从而导致了一顿白忙活,造成“十动仍拒”的下场. 所以指标定义的清晰性是开始分析工作的前提.推荐算法Slope One初探
- - 标点符Slope One 算法是由 Daniel Lemire 教授在 2005 年提出的一个 Item-Based 推荐算法. Slope One 算法试图同时满足这样的的 5 个目标: . 易于实现和维护:普通工程师可以轻松解释所有的聚合数据,并且算法易于实现和测试. 运行时可更新的:新增一个评分项,应该对预测结果即时产生影响.[转]Mahout推荐算法基础
- - 小鸥的博客Mahout推荐算法分为以下几大类. 2.相近的用户定义与数量. 2.用户数较少时计算速度快. 1.基于item的相似度. 1.item较少时就算速度更快. 2.当item的外部概念易于理解和获得是非常有用. 1基于SlopeOne算法(打分差异规则). 当item数目十分少了也很有效. 需要限制diffs的存储数目否则内存增长太快.美团推荐算法实践
- - 美团技术团队推荐系统并不是新鲜的事物,在很久之前就存在,但是推荐系统真正进入人们的视野,并且作为一个重要的模块存在于各个互联网公司,还是近几年的事情. 随着互联网的深入发展,越来越多的信息在互联网上传播,产生了严重的信息过载. 如果不采用一定的手段,用户很难从如此多的信息流中找到对自己有价值的信息. 解决信息过载有几种手段:一种是搜索,当用户有了明确的信息需求意图后,将意图转换为几个简短的词或者短语的组合(即query),然后将这些词或短语组合提交到相应的搜索引擎,再由搜索引擎在海量的信息库中检索出与query相关的信息返回给用户;另外一种是推荐,很多时候用户的意图并不是很明确,或者很难用清晰的语义表达,有时甚至连用户自己都不清楚自己的需求,这种情况下搜索就显得捉襟见肘了.互联网无处不在的“推荐算法”
- Tiger - 所有文章 - UCD大社区数据显示,三分之一的用户会根据电子商务网站的推荐买东西,这是任何广告都不可能做到的成绩. 媒体上播放的大众化广告对消费者的影响已经越来越低,于是有人做出预见——个性化推荐技术将成为广告的终极形式. 很多年前,看过一部电影叫作《谁知女人心》,好莱坞大牌梅尔·吉布森饰演的男主角是一个典型的大男子主义者.http://itindex.net/detail/48960-%E7%9F%A9%E9%98%B5%E5%88%86%E8%A7%A3-%E6%8E%A8%E8%8D%90%E7%AE%97%E6%B3%95-kobeshow