HDU 4686 Arc of Dream(递归矩阵加速)

时间:2023-12-21 09:31:38

标题效果:你就是给你一程了两个递推公式公式,第一个让你找到n结果项目。

注意需要占用该公式的复发和再构造矩阵。

Arc of Dream

Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)

Total Submission(s): 2092    Accepted Submission(s): 664

Problem Description
An Arc of Dream is a curve defined by following function:

HDU 4686 Arc of Dream(递归矩阵加速)


where

a0 = A0

ai = ai-1*AX+AY

b0 = B0

bi = bi-1*BX+BY

What is the value of AoD(N) modulo 1,000,000,007?
Input
There are multiple test cases. Process to the End of File.

Each test case contains 7 nonnegative integers as follows:

N

A0 AX AY

B0 BX BY

N is no more than 1018, and all the other integers are no more than 2×109.
Output
For each test case, output AoD(N) modulo 1,000,000,007.
Sample Input
1
1 2 3
4 5 6
2
1 2 3
4 5 6
3
1 2 3
4 5 6
Sample Output
4
134
1902

#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-10
///#define M 1000100
#define LL __int64
///#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)? 0:x) #define mod 1000000007 const int maxn = 210; using namespace std; struct matrix
{
LL f[10][10];
}; matrix mul(matrix a, matrix b, int n)
{
matrix c;
memset(c.f, 0, sizeof(c.f));
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
for(int k = 0; k < n; k++) c.f[i][j] += a.f[i][k]*b.f[k][j];
c.f[i][j] %= mod;
}
}
return c;
} matrix pow_mod(matrix a, LL b, int n)
{
matrix s;
memset(s.f, 0 , sizeof(s.f));
for(int i = 0; i < n; i++) s.f[i][i] = 1LL;
while(b)
{
if(b&1) s = mul(s, a, n);
a = mul(a, a, n);
b >>= 1;
}
return s;
} matrix Add(matrix a,matrix b, int n)
{
matrix c;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
c.f[i][j] = a.f[i][j]+b.f[i][j];
c.f[i][j] %= mod;
}
}
return c;
} int main()
{
LL n;
LL a, ax, ay;
LL b, bx, by;
while(~scanf("%I64d",&n))
{
scanf("%I64d %I64d %I64d",&a, &ax, &ay);
scanf("%I64d %I64d %I64d",&b, &bx, &by);
a %= mod;
ax %= mod;
ay %= mod;
b %= mod;
bx %= mod;
by %= mod;
LL ff = a*b%mod;
LL x = (a*ax+ay)%mod;
LL y = (b*bx+by)%mod;
LL pp = (x*y)%mod;
if(n == 0)
{
puts("0");
continue;
}
matrix c;
memset(c.f, 0 ,sizeof(c.f));
c.f[0][0] = ax*bx%mod;
c.f[0][1] = ax*by%mod;
c.f[0][2] = ay*bx%mod;
c.f[0][3] = ay*by%mod;
///c.f[0][4] = 1LL;
c.f[1][1] = ax;
c.f[1][3] = ay;
c.f[2][2] = bx;
c.f[2][3] = by;
c.f[3][3] = 1LL;
c.f[4][0] = 1LL;
c.f[4][4] = 1LL;
matrix d = pow_mod(c, n-1LL, 5);
LL sum = 0LL; sum += ((d.f[4][0]*pp%mod)+(d.f[4][4]*ff%mod))%mod;
sum += ((d.f[4][1]*x%mod) + (d.f[4][2]*y%mod) + d.f[4][3]%mod)%mod;
printf("%I64d\n",(sum+mod)%mod);
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。