#1043 : 完全背包
描述
且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!
等等,这段故事为何似曾相识?这就要从平行宇宙理论说起了………总而言之,在另一个宇宙中,小Ho面临的问题发生了细微的变化!
小Ho现在手上有M张奖券,而奖品区有N种奖品,分别标号为1到N,其中第i种奖品需要need(i)张奖券进行兑换,并且可以兑换无数次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。
提示一: 切,不就是0~1变成了0~K么
令人欣慰的是,在这个平行世界里小Ho已经学习了一般的01背包问题,所以他并没有思考太久,便提出了自己的想法。
“我们的首要目标仍然是将问题抽象化!在我看来,这个问题其实和01背包问题很像,我们在解决01背包问题的时候是按照奖品的标号从1到N依次决定每件奖品是否选取,那么对于每种奖品有无数件的这个问题,我可以按照奖品的标号从1到N依次决定每种奖品选取的件数!”
小Hi点了点头表示赞同。
小Ho于是继续说道:“那么按照01背包的想法,我可以使用best(i, x)表示已经决定了前i件物品每件物品选择多少件,当前已经选取的物品的所需奖券数总和不超过x时,能够获取的最高的喜好值的和,那么最终的答案便是best(N, M)。”
小Hi道:”的确可以这样,那么你准备如何转移呢?”
小Ho道:“仍然是根据01背包的做法,对于一个问题best(i, x),考虑最后一步——即第i件物品选择多少件,不妨就假设选择k件吧,那么k的取值范围肯定是在0~(x / need(i))这个范围内。这个时候我们可以知道best(i - 1, x - need(i) * k) + value(i) * k将会是一种可能的方案。”
小Hi挠了挠头,问道:”你所说的‘可能的方案’是什么意思?”
小Ho笑道:“就是说best(i, x)的求解满足这个公式~”
说罢,拿过纸笔,列出了一个式子。
小Hi接过纸来,看完说道:“的确没错,总共就是这些可能~那你是否求解这个问题也是用与01背包类似的方法进行求解呢?”
“是的,我会使用这样的方法来做!”小Ho刷刷刷又在纸上写下来几行伪代码。
“应该没有问题,时间复杂度也很不错了~~但是我看着总有点难受!”小Hi点了点头又摇头。
“怎么说?”
提示二:强迫症患者总是会将状态转移方程优化一遍又一遍
小Hi嘻嘻笑了两声,说道:“我们不妨换一种问题定义的方式:用best(i, x)表示已经决定了前i件物品每件物品选择多少件,当前已经选取的物品的所需奖券数总和不超过x时,能够获取的最高的喜好值的和!”
小Ho仔仔细细回忆了下,确认小Hi所说和自己先前并无区别,怒道:“你这和我的定义方法有什么区别呀?”
小Hi道:“别急别急,这部分的确没有区别,有区别的在后头~”
小Ho撇了撇嘴:“那你就说呗~”
小Hi继续道:“我们还是考虑最后一步——要不要再选一件第i种奖品!”
小Ho有点不能理解,道:“什么叫再选一件?”
“你想想,在你的状态转移方程(即问题求解公式)中是否满足这样两个公式?”小Hi问道。
小Ho低头想了想,点了点头表示赞同。
小Hi于是继续问道:“那你有没有意识到这样一个等式?”
“似乎……是的!”小Ho惊道:“这么说,其实best(i, x)的大部分计算都在best(i, x - need(i))中已经计算过了!”
小Hi问出了最后一个问题:“所以你的公式是不是就可以变成这样子呢?”
“是的!所以……代码就可以这么写了~是么!”
“是的嗯~”
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第一行为两个正整数N和M,表示奖品的种数,以及小Ho手中的奖券数。
接下来的n行描述每一行描述一种奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。
测试数据保证
对于100%的数据,N的值不超过500,M的值不超过10^5
对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3
输出
对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。
- 样例输入
-
5 1000
144 990
487 436
210 673
567 58
1056 897 - 样例输出
-
5940
hihocoder 1043 完全背包的更多相关文章
-
hihoCoder #1043 : 完全背包(板子题)
#1043 : 完全背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的 ...
-
hihoCoder 1043 完全背包 (dp)
http://hihocoder.com/problemset/problem/1043 动态转移方程 :for v=cost..V f[v]=max(f[v],f[v-c[i]]+w[i]); #i ...
-
hiho #1043 : 完全背包
01背包和完全背包解析 在上一节的01背包中,每种物品只能使用一次. 初始化j=V,逆序推能够保证 dp[v-c[i]] 保存的是状态是 dp[i-1][v-c[i]] ,也就是每个物品只被使用了一次 ...
-
【HIHOCODER 1043】题目1 : 完全背包
描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了! 等等,这段故事为何似曾相识?这就要从平行宇宙理论说起了---总而言之,在另一个宇宙中,小 ...
-
hihoCoder #1038 : 01背包(板子题)
#1038 : 01背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励 ...
-
hihoCoder week7 完全背包
完全背包 题目链接 https://hihocoder.com/contest/hiho7/problem/1 #include <bits/stdc++.h> using namespa ...
-
hihoCoder week6 01背包
01背包 题目链接 https://hihocoder.com/contest/hiho6/problem/1 #include <bits/stdc++.h> using namespa ...
-
hihocoder 1038 01背包
#1038 : 01背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励 ...
-
HihoCoder - 1038 01背包 动态规划
#1038 : 01背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励 ...
随机推荐
-
IOS框架和服务
在iOS中框架是一个目录,包含了共享资源库,用于访问该资源库中储存的代码的头文件,以及图像.声音文件等其他资源.共享资源库定义应用程序可以调用的函数和方法. iOS为应用程序开发提供了许多可使用的框架 ...
-
hdu 2857 求点关于线段的对称点
本来很简单的一个题,但是有个大坑: 因为模板中Tline用到了直线的一般方程ax+by+c=0,所以有种很坑的情况需要特判: 斜率不存在啊喂 老子坑了一下午2333 #include <math ...
-
Ajax请求中带有IPv6地址后的百分号的问题
IPv6地址后的百分号: 对于连入网络但没有IPv6路由器或DHCPv6服务器的IPv6客户端,它们始终使用fe80::/64链路本地网络地址.如果运行Windows的计算机中有多个网络适配器连接到不 ...
-
【noip2011】Mayan游戏
题解: 刷了一天的noip啊 做了10题! 突然找回了做马拉松的感觉- - 我中午竟然放弃治疗去看视频 做到晚上累得都快挂了 用电脑放一些rock 把音乐当咖啡硬撑下来 但是还是没能刷3届 唉 显然速 ...
-
nyoj 523 亡命逃窜 【BFS】
亡命逃窜 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描写叙述 从前有个叫hck的骑士,为了救我们漂亮的公主,潜入魔王的老巢,够英雄吧.只是英雄不是这么好当的.这个可怜的娃 ...
-
C# - 重写虚方法
项目目录: 创建教师类(Teacher),虚方法有Teach(); 创建学生类(Student),重写的方法是Teach(); 教师类: · 加上关键字 Virtual 就是声明可以重写此方法. us ...
-
【搜索 回溯】 zoj 1002
题意:一些机枪彼此不能在同一行和同一列,但是由于有墙的阻隔,能保证子弹无法穿透,即可以同行同列,现问如果说给了一个n*n(n<=4)的矩阵,并给出了墙的分布情况,能否求出最大能繁殖的机枪数. 思 ...
-
简单倒计时js代码
//倒计时 var timer=null; var interval = 1000; function ShowCountDown(year,month,day,hour,minute,second, ...
-
Mysql启动找不到mysql.sock文件问题(Centos7)
刚装完Mysql5.7,将Mysql添加到开机自启.reboot之后mysql服务却没启动起来, 直接输入mysql –uroot –p ,出现如下错误,找不到mysql.sock文件.用servic ...
-
java学习笔记38(sql注入攻击及解决方法)
上一篇我们写了jdbc工具类:JDBCUtils ,在这里我们使用该工具类来连接数据库, 在之前我们使用 Statement接口下的executeQuery(sql)方法来执行搜索语句,但是这个接口并 ...