1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
#include <iostream>
#include <cmath>
using namespace std;
double cofactor( double * detPtr, int rank, int t); //代数余子式
double valDet( double *detPtr, int rank); //行列式
template < class T>
void exchange(T& t1,T& t2){T temp;temp=t1;t1=t2;t2=temp;} //交换
class SquareMatrix;
class Matrix{
public :
friend class SquareMatrix; //配合转换函数食用
Matrix(){m=n=mn=0;} //默认构造函数
Matrix( int mt, int nt); //构造矩阵
Matrix( const Matrix& mtrx); //复制构造函数
Matrix( int mt, int nt, double * a); //数组初始化矩阵
Matrix transposeMtrx(); //转置矩阵
//初等变换
void exchangeRow( int r1, int r2, int c=0); //交换行
void multiRow( int r, int k, int c=0); //数乘行
void addMultiRow( int r1, int r2, int k=1, int c=0); //r1+=k*r2
void exchangeColumn( int c1, int c2, int r=0); //交换列
void multiColumn( int c, int k, int r=0); //数乘列
void addMultiColumn( int c1, int c2, int k=1, int r=0); //c1+=k*c2
Matrix& operator =( const Matrix& mtrx); //赋值构造函数
friend istream& operator>>(istream& input,Matrix& mtrx);
friend ostream& operator<<(ostream& output,Matrix& mtrx); //输出矩阵
friend Matrix operator*(Matrix& m1,Matrix& m2); //矩阵乘法
protected :
int m;
int n;
int mn;
double * matrixPtr;
};
class SquareMatrix: public Matrix{
public :
SquareMatrix():Matrix(){} //默认构造函数
SquareMatrix( int mt):Matrix(mt,mt){}; //构造函数
SquareMatrix( int mt, double * a):Matrix(mt,mt,a){}; //数组初始化方阵
SquareMatrix( const Matrix& mtrx); //矩阵到方阵转换
SquareMatrix transposeSqrMtrx(); //转置方阵
SquareMatrix adjugateSqrMatrix(); //伴随矩阵
SquareMatrix inverseSqrMatrix(); //逆矩阵
friend istream& operator>>(istream& input,SquareMatrix& mtrx);
//输入方阵
friend SquareMatrix operator *(SquareMatrix& sm1,SquareMatrix& sm2);
//方阵乘法
double getDet(); //行列式的值
private :
};
Matrix::Matrix( int mt, int nt){ //初始化m*n矩阵
m=mt;n=nt;mn=m*n;
matrixPtr= new double [mn];
}
Matrix::Matrix( const Matrix& mtrx){ //复制构造函数
m=mtrx.m;n=mtrx.n;mn=mtrx.mn;
matrixPtr= new double [mn];
for ( int i=0;i<mn;i++) matrixPtr[i]=mtrx.matrixPtr[i];
}
Matrix::Matrix( int mt, int nt, double * a){ //数组初始化m*n矩阵
m=mt;n=nt;mn=m*n;
matrixPtr= new double [mn];
for ( int i=0;i<mn;i++)
matrixPtr[i]=a[i];
}
istream& operator>>(istream& input,Matrix& mtrx){ //重载>>
if (!mtrx.m){
cout<< "enter the m,n of matrix:" ;
input>>mtrx.m>>mtrx.n;
mtrx.mn=mtrx.m*mtrx.n;
mtrx.matrixPtr= new double [mtrx.mn];
cout<< "enter the matrix:" <<endl;
}
else cout<< "enter a " <<mtrx.m<< '*' <<mtrx.n<< " matrix:" <<endl;
for ( int i=0;i<mtrx.mn;i++) input>>mtrx.matrixPtr[i];
return input;
}
Matrix Matrix::transposeMtrx(){ //转置矩阵
Matrix mtrx(n,m);
for ( int i=0;i<n;i++)
for ( int j=0;j<m;j++)
mtrx.matrixPtr[m*i+j]=matrixPtr[n*j+i];
return mtrx;
}
void Matrix::exchangeRow( int r1, int r2, int c){ //交换行,默认c=0
for ( int i=c;i<n;i++)
exchange(matrixPtr[n*r1+i],matrixPtr[n*r2+i]);
}
void Matrix::multiRow( int r, int k, int c){ //数乘行,默认c=0
for ( int i=c;i<n;i++)
matrixPtr[n*r+i]*=k;
}
void Matrix::addMultiRow( int r1, int r2, int k, int c){ //r1+=k*r2,默认k=1,c=0
for ( int i=c;i<n;i++)
matrixPtr[n*r1+i]+=matrixPtr[n*r2+i]*k;
}
void Matrix::exchangeColumn( int c1, int c2, int r){ //交换列,默认r=0
for ( int i=r;i<m;i++)
exchange(matrixPtr[n*i+c1],matrixPtr[n*i+c2]);
}
void Matrix::multiColumn( int c, int k, int r){ //数乘列,默认k=1,r=0
for ( int i=r;i<m;i++)
matrixPtr[n*i+c]*=k;
}
void Matrix::addMultiColumn( int c1, int c2, int k, int r){ //c1+=k*c2,默认r=0
for ( int i=r;i<m;i++)
matrixPtr[n*i+c1]+=matrixPtr[n*i+c2]*k;
}
Matrix& Matrix::operator=( const Matrix& mtrx){ //重载=
m=mtrx.m;n=mtrx.n;mn=m*n;
matrixPtr= new double [mn];
for ( int i=0;i<mn;i++) matrixPtr[i]=mtrx.matrixPtr[i];
return * this ;
}
ostream& operator<<(ostream& output,Matrix& mtrx){ //重载<<
output<<endl;
for ( int i=0;i<mtrx.m;i++){
for ( int j=0;j<mtrx.n;j++)
output<<mtrx.matrixPtr[mtrx.n*i+j]<< ' ' ;
output<<endl;
}
output<<endl;
return output;
}
Matrix operator *(Matrix& m1,Matrix& m2){ //重载*
Matrix m3(m1.m,m2.n);
for ( int i=0;i<m3.m;i++)
for ( int j=0;j<m3.n;j++){
double val=0;
for ( int k=0;k<m2.m;k++)
val+=m1.matrixPtr[m1.n*i+k]*m2.matrixPtr[m2.n*k+j];
m3.matrixPtr[m3.n*i+j]=val;
}
return m3;
}
//我是萌萌哒分割线-------------------------------------------------------
SquareMatrix::SquareMatrix( const Matrix& mtrx){ //构造函数
m=n=mtrx.m;mn=m*n;matrixPtr= new double [mn];
for ( int i=0;i<mn;i++) matrixPtr[i]=mtrx.matrixPtr[i];
}
istream& operator>>(istream& input,SquareMatrix& mtrx){ //重载>>
if (!mtrx.m){
cout<< "enter the m of squareMatrix:" ;
input>>mtrx.m;
mtrx.n=mtrx.m;mtrx.mn=mtrx.m*mtrx.n;
mtrx.matrixPtr= new double [mtrx.mn];
cout<< "enter the squareMatrix:" <<endl;
}
else cout<< "enter a " <<mtrx.m<< " order squareMatrix:" <<endl;
for ( int i=0;i<mtrx.mn;i++) input>>mtrx.matrixPtr[i];
return input;
}
SquareMatrix SquareMatrix::transposeSqrMtrx(){ //转置方阵
return SquareMatrix((* this ).transposeMtrx());
}
SquareMatrix SquareMatrix::adjugateSqrMatrix(){ //伴随矩阵
SquareMatrix aSM(m);
for ( int i=0;i<mn;i++)
aSM.matrixPtr[i]=cofactor(matrixPtr,m,i);
aSM=aSM.transposeSqrMtrx();
return aSM;
}
SquareMatrix SquareMatrix::inverseSqrMatrix(){ //逆矩阵
double det=getDet();
if (det==0){
cerr<< "this is a singular matrix!" <<endl; //判断奇异矩阵
return 0;
}
SquareMatrix aSM(m),iSM(m);
aSM=adjugateSqrMatrix();
for ( int i=0;i<mn;i++)
iSM.matrixPtr[i]=aSM.matrixPtr[i]/det;
return iSM;
}
SquareMatrix operator *(SquareMatrix& sm1,SquareMatrix& sm2){ //重载*
SquareMatrix sm3(sm1.m);
for ( int i=0;i<sm3.m;i++)
for ( int j=0;j<sm3.n;j++){
double val=0;
for ( int k=0;k<sm2.m;k++)
val+=sm1.matrixPtr[sm1.n*i+k]*sm2.matrixPtr[sm2.n*k+j];
sm3.matrixPtr[sm3.n*i+j]=val;
}
return sm3;
}
double SquareMatrix::getDet(){ //行列式
return valDet(matrixPtr,m);
}
//又是一条萌萌哒分割线------------------------------------------
double valDet( double *detPtr, int rank)
{
double val=0;
if (rank==1) return detPtr[0];
for ( int i=0;i<rank;i++) //计算余子式保存在nextDetPtr[]中
{
double *nextDetPtr= new double [(rank-1)*(rank-1)];
for ( int j=0;j<rank-1;j++)
for ( int k=0;k<i;k++)
nextDetPtr[j*(rank-1)+k]=detPtr[(j+1)*rank+k];
for ( int j=0;j<rank-1;j++)
for ( int k=i;k<rank-1;k++)
nextDetPtr[j*(rank-1)+k]=detPtr[(j+1)*rank+k+1];
val+=detPtr[i]*valDet(nextDetPtr,rank-1)* pow (-1.0,i);
}
return val;
}
double cofactor( double * detPtr, int rank, int t){ //计算代数余子式
double *nextDetPtr= new double [(rank-1)*(rank-1)];
for ( int i=0,j=0;i<rank*rank;i++)
if (i>=(t/rank)*rank&&i<(t/rank)*rank+rank||!((t-i)%rank)); //如果i和t同行或同列
else {
nextDetPtr[j]=detPtr[i];
j++;
}
return valDet(nextDetPtr,rank-1)* pow (-1.0,t/rank+t%rank);
}
int main(){
cout<<endl<< "测试驱动程序-------------------" <<endl;
/*
cout<<endl<<"输入任意矩阵-------------------"<<endl;
Matrix m1;cin>>m1;cout<<m1;
cout<<endl<<"输入任意方阵-------------------"<<endl;
SquareMatrix sm1;cin>>sm1;cout<<sm1;
cout<<endl<<"输入3*2矩阵--------------------"<<endl;
Matrix m2(3,2);cin>>m2;cout<<m2;
cout<<endl<<"输入2阶方阵--------------------"<<endl;
SquareMatrix sm2(2);cin>>sm2;cout<<sm2;
*/
cout<<endl<< "数组初始化矩阵-----------------" <<endl;
double a1[6]={1,2,3,7,8,9};
Matrix m3(2,3,a1);cout<<m3;
cout<<endl<< "数组初始化方阵-----------------" <<endl;
double a2[4]={3,4,5,6};
SquareMatrix sm3(2,a2);cout<<sm3;
cout<<endl<< "复制构造方阵/矩阵--------------" <<endl;
Matrix m4;m4=m3;Matrix m5(m3);
cout<<m4<<m5;
SquareMatrix sm4;sm4=sm3;SquareMatrix sm5(sm3);
cout<<sm4<<sm5;
cout<<endl<< "矩阵/方阵乘法------------------" <<endl;
double a3[6]={1,0,3,2,1,0},a4[9]={4,1,0,-1,1,3,2,0,1};
Matrix m6(2,3,a3),m7(3,3,a4);
Matrix m8=m6*m7;cout<<m8;
double a5[4]={1,2,2,3},a6[4]={2,3,4,1};
SquareMatrix sm6(2,a5),sm7(2,a6);
SquareMatrix sm8(sm6*sm7);cout<<sm8;
cout<<endl<< "矩阵转换为方阵-----------------" <<endl;
SquareMatrix sm9(m7);cout<<m7<<sm9;
cout<<endl<< "转置矩阵/方阵------------------" <<endl;
Matrix m9(m6.transposeMtrx());
cout<<m6<<m9;
SquareMatrix sm10=sm9.transposeSqrMtrx();
cout<<sm9<<sm10;
cout<<endl<< "初等变换-----------------------" <<endl;
cout<<m3<<m4;
m4.exchangeRow(0,1,2);cout<<m3<<m4;
m4.exchangeRow(0,1);cout<<m4;
m4.exchangeColumn(0,2);cout<<m4;
m4.multiRow(1,2);cout<<m4;
m4.multiColumn(1,2,1);cout<<m4;
m4.addMultiRow(0,1);cout<<m4;
m4.addMultiColumn(0,2,2,1);cout<<m4;
cout<<sm3<<sm4;
sm4.exchangeRow(0,1);cout<<sm3<<sm4;
cout<<endl<< "方阵的行列式值-----------------" <<endl;
cout<<sm3<<sm3.getDet()<<endl;
cout<<endl<< "逆矩阵-------------------------" <<endl;
SquareMatrix sm11=sm3.inverseSqrMatrix();cout<<sm11;
SquareMatrix sm12=sm3*sm11;cout<<sm12;
return 0;
}
|
以上这篇重构-C++实现矩阵的简单实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。