I have a problem with the read.fasta function of package "seqinr". When I use it with a lapply, it doesn't create the desired vector.
我的包“seqinr”的read.fasta函数有问题。当我使用lapply时,它不会创建所需的向量。
Also, when I use the function count on a vector built manually, the results are a table of zeros.
此外,当我在手动构建的向量上使用函数计数时,结果是一个零表。
This is my code:
这是我的代码:
library("seqinr")
library(MASS)
#GETTING THE FILES AFTER FRAGMENTS OF 500
files <- list.files(path="/Users/CamilaMV/Desktop/TESIS/", pattern=".fna500mer..split", full.names=T, recursive=FALSE)
files
# SOLO ESTA TOMANDO EL PRIMER ARCHIVO
#READING THE DIFFERENT FASTA FILES
ncrna <- lapply(files, function(x) { read.fasta(x,seqonly = T) })
seqs<-list()
for(i in seq_along(ncrna))
{
seqs[i]<-list(ncrna[[i]])
}
len1<-length(seqs[[1]])
frags1<-list()
for(j in 1:len1)
{
frags1[j]<-list(seqs[[1]][[j]])
}
frags1
#COUNTING TRETRANUCLEOTIDES FOR EACH FRAGMENT
tetra_frag1<-list()
# seq_along(frags1)
#frags1[[1]]
for(l in seq_along(frags1))
{
#tetra[i]<-list(count(ncra[[i]],4))
tetra_frag1[l]<-oligonucleotideFrequency(frags1[[l]],4)
}
When I did it before, the count function worked but it doesn't work properly anymore.
当我之前完成它时,计数功能起作用,但它不再正常工作。
Then, I decided to use oligonucletideFrequency function but it gives me the following error:
然后,我决定使用oligucletideFrequency函数,但它给我以下错误:
Error in (function (classes, fdef, mtable) : unable to find an inherited method for function ‘oligonucleotideFrequency’ for signature ‘"character"’
(函数(classes,fdef,mtable)中的错误:无法为签名'“character”'找到函数'oligonucleotideFrequency'的继承方法
But when I used is.character(frags1[[1]]) as a test, the result is true.
但是当我使用is.character(frags1 [[1]])作为测试时,结果为真。
I want to get a matrix that have oligonucletide frequencies to perform a PCA.
我想得到一个具有寡核苷酸频率的矩阵来执行PCA。
I want a final table where the columns are the 256 combinations of tetranucleotides and the rows are the names of the fragments (e.g. frag1, frag2,...) like the following:
我想要一个最终表,其中列是四核苷酸的256种组合,行是片段的名称(例如frag1,frag2,......),如下所示:
aaaa aaac ... f1 3 5 f2 4 6 f3 5 7 ...
aaaa aaac ... f1 3 5 f2 4 6 f3 5 7 ...
I will apreciate the help.
我会帮助你。
1 个解决方案
#1
1
I could resolve the first problem and others. Finally, I have a R script with 4 functions that result in a list of RGB vectors.
我可以解决第一个问题和其他问题。最后,我有一个带有4个函数的R脚本,它们生成一个RGB向量列表。
# GETTING LIBRARIES
library("seqinr")
library("ade4")
library("Biostrings")
## funcion 1
Processing_fragments<-function(PATH_FILES){
#GETTING THE FILES AFTER FRAGMENTS OF 500
files <- list.files(path=PATH_FILES, pattern=".fna500mer", full.names=T, recursive=FALSE)
#GETTING THE FILES READING AS FASTA
ncrna <- lapply(files, function(x) { read.fasta(x,seqonly = T) })
fragmentsGeno1<-list()
for(k in seq_along(ncrna[1]))
{
for(l in 1:10484)
{
fragmentsGeno1[l]<-ncrna[[k]][[l]]
}
}
fragmentsGeno2<-list()
for(k in seq_along(ncrna[2]))
{
for(l in 1:length(ncrna[[2]]))
{
fragmentsGeno2[l]<-ncrna[[k]][[l]]
}
}
#GETTING ALL FRAGMENTS
allFragments<-c(fragmentsGeno1,fragmentsGeno2)
return(allFragments)
}
## funcion 2
Getting_frequency_account<-function(allFragments,kmer){
#CONVERTING LOS FRAGMENTOS DE CADA FILE A OBJETOS DE DNAString
DNA_String_Set_list_ALL<-list()
for(i in seq_along(allFragments))
{
DNA_String_Set_list_ALL[i]<-DNAStringSet(allFragments[[i]])
}
# counting oligonucleotide
countGenome1_Tetra<-lapply(DNA_String_Set_list_ALL,function(x) {oligonucleotideFrequency((x),kmer, as.prob = T) })
# MATRIX FOR THE PCA
#names columns
col_names<-dimnames(countGenome1_Tetra[[1]])
col_names<-col_names[[2]]
#names rows
frag_names<-c(paste("frag",c(1:length(allFragments)),sep=""))
#matrix for PCA
matrix_PCA<-matrix(unlist(countGenome1_Tetra),nrow = length(allFragments),ncol=256,byrow = T,dimnames=list(frag_names,col_names))
return(matrix_PCA)
}
# View(matrix_PCA)
## funcion 3
Getting_first_three_components<-function(matrix_PCA){
######## PCA with prcomp#########
prcomp_All<-prcomp(matrix_PCA)
#obtaing the sum of varianza of the first three components
Var<-prcomp_All$sdev^2 / sum(prcomp_All$sdev^2)
Varianza_3_first_comp<-Var[1:3]
Varianza_3_first_comp_Porcent<-Varianza_3_first_comp*100
Suma_total<-sum(Varianza_3_first_comp_Porcent)
## obteniendo eigen of first three components
loadings_prcomp<-prcomp_All$x
#dim(loadings_prcomp)
First_three_components<-loadings_prcomp[,c(1,2,3)]
return(First_three_components)
}
#funcion 4
Generating_hex_color_codes<-function(First_three_components){
# getting min and max
min<-min(First_three_components)
max<-max(First_three_components)
# getting ranges
range_2_color<-c(min,max)
range_RGB_color<-c(0,1)
#making linear regression
lm.out<-lm(range_RGB_color~range_2_color)
#getting slope and intercept
slope<-lm.out$coefficients[2]
intercept<-lm.out$coefficients[1]
#normalizing pca results to RGB
new_Matriz<-(First_three_components*slope)+intercept
new_Matriz<-as.matrix(new_Matriz)
#using funcion rgb to generate matrix of hex color code
#hex_Color_Matriz<-t(mapply(rgb, split(new_Matriz[,1], new_Matriz[,2],new_Matriz[,3],maxColorValue=255)))
hex_Color_Vector<-vector()
# list de cada r,g,b de cada fragmento
rgb_List_Each_Fragment<-list()
row_Final<-length(new_Matriz[,1])
columns_Final<-length(new_Matriz[1,])
for(i in 1:row_Final){
for(j in 1:columns_Final){
red<-new_Matriz[i,1]
green<-new_Matriz[i,2]
blue<-new_Matriz[i,3]
hex_Color_Vector[i]<-rgb(red,green,blue,maxColorValue = 1)
rgb_List_Each_Fragment[i]<-list(c(red,green,blue))
}
}
return(rgb_List_Each_Fragment)
}
# Calling all the funcionts in order
allFragments<-Processing_fragments("/Users/CamilaMV/Desktop/TESIS")
matrix_PCA<-Getting_frequency_account(allFragments,4)
First_three_components<-Getting_first_three_components(matrix_PCA)
Hex_color_list<-Generating_hex_color_codes(First_three_components)
#1
1
I could resolve the first problem and others. Finally, I have a R script with 4 functions that result in a list of RGB vectors.
我可以解决第一个问题和其他问题。最后,我有一个带有4个函数的R脚本,它们生成一个RGB向量列表。
# GETTING LIBRARIES
library("seqinr")
library("ade4")
library("Biostrings")
## funcion 1
Processing_fragments<-function(PATH_FILES){
#GETTING THE FILES AFTER FRAGMENTS OF 500
files <- list.files(path=PATH_FILES, pattern=".fna500mer", full.names=T, recursive=FALSE)
#GETTING THE FILES READING AS FASTA
ncrna <- lapply(files, function(x) { read.fasta(x,seqonly = T) })
fragmentsGeno1<-list()
for(k in seq_along(ncrna[1]))
{
for(l in 1:10484)
{
fragmentsGeno1[l]<-ncrna[[k]][[l]]
}
}
fragmentsGeno2<-list()
for(k in seq_along(ncrna[2]))
{
for(l in 1:length(ncrna[[2]]))
{
fragmentsGeno2[l]<-ncrna[[k]][[l]]
}
}
#GETTING ALL FRAGMENTS
allFragments<-c(fragmentsGeno1,fragmentsGeno2)
return(allFragments)
}
## funcion 2
Getting_frequency_account<-function(allFragments,kmer){
#CONVERTING LOS FRAGMENTOS DE CADA FILE A OBJETOS DE DNAString
DNA_String_Set_list_ALL<-list()
for(i in seq_along(allFragments))
{
DNA_String_Set_list_ALL[i]<-DNAStringSet(allFragments[[i]])
}
# counting oligonucleotide
countGenome1_Tetra<-lapply(DNA_String_Set_list_ALL,function(x) {oligonucleotideFrequency((x),kmer, as.prob = T) })
# MATRIX FOR THE PCA
#names columns
col_names<-dimnames(countGenome1_Tetra[[1]])
col_names<-col_names[[2]]
#names rows
frag_names<-c(paste("frag",c(1:length(allFragments)),sep=""))
#matrix for PCA
matrix_PCA<-matrix(unlist(countGenome1_Tetra),nrow = length(allFragments),ncol=256,byrow = T,dimnames=list(frag_names,col_names))
return(matrix_PCA)
}
# View(matrix_PCA)
## funcion 3
Getting_first_three_components<-function(matrix_PCA){
######## PCA with prcomp#########
prcomp_All<-prcomp(matrix_PCA)
#obtaing the sum of varianza of the first three components
Var<-prcomp_All$sdev^2 / sum(prcomp_All$sdev^2)
Varianza_3_first_comp<-Var[1:3]
Varianza_3_first_comp_Porcent<-Varianza_3_first_comp*100
Suma_total<-sum(Varianza_3_first_comp_Porcent)
## obteniendo eigen of first three components
loadings_prcomp<-prcomp_All$x
#dim(loadings_prcomp)
First_three_components<-loadings_prcomp[,c(1,2,3)]
return(First_three_components)
}
#funcion 4
Generating_hex_color_codes<-function(First_three_components){
# getting min and max
min<-min(First_three_components)
max<-max(First_three_components)
# getting ranges
range_2_color<-c(min,max)
range_RGB_color<-c(0,1)
#making linear regression
lm.out<-lm(range_RGB_color~range_2_color)
#getting slope and intercept
slope<-lm.out$coefficients[2]
intercept<-lm.out$coefficients[1]
#normalizing pca results to RGB
new_Matriz<-(First_three_components*slope)+intercept
new_Matriz<-as.matrix(new_Matriz)
#using funcion rgb to generate matrix of hex color code
#hex_Color_Matriz<-t(mapply(rgb, split(new_Matriz[,1], new_Matriz[,2],new_Matriz[,3],maxColorValue=255)))
hex_Color_Vector<-vector()
# list de cada r,g,b de cada fragmento
rgb_List_Each_Fragment<-list()
row_Final<-length(new_Matriz[,1])
columns_Final<-length(new_Matriz[1,])
for(i in 1:row_Final){
for(j in 1:columns_Final){
red<-new_Matriz[i,1]
green<-new_Matriz[i,2]
blue<-new_Matriz[i,3]
hex_Color_Vector[i]<-rgb(red,green,blue,maxColorValue = 1)
rgb_List_Each_Fragment[i]<-list(c(red,green,blue))
}
}
return(rgb_List_Each_Fragment)
}
# Calling all the funcionts in order
allFragments<-Processing_fragments("/Users/CamilaMV/Desktop/TESIS")
matrix_PCA<-Getting_frequency_account(allFragments,4)
First_three_components<-Getting_first_three_components(matrix_PCA)
Hex_color_list<-Generating_hex_color_codes(First_three_components)