我就废话不多说了,大家还是直接看代码吧~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
import keras
from sklearn.model_selection import train_test_split
import tensorflow as tf
from keras.callbacks import ModelCheckpoint,Callback
# import keras.backend as K
from keras.layers import *
from keras.models import Model
from keras.optimizers import SGD, RMSprop, Adagrad,Adam
from keras.models import *
from keras.metrics import *
from keras import backend as K
from keras.regularizers import *
from keras.metrics import categorical_accuracy
# from keras.regularizers import activity_l1 #通过L1正则项,使得输出更加稀疏
from keras_contrib.layers import CRF
from visual_callbacks import AccLossPlotter
plotter = AccLossPlotter(graphs = [ 'acc' , 'loss' ], save_graph = True , save_graph_path = sys.path[ 0 ])
# from crf import CRFLayer,create_custom_objects
class LossHistory(Callback):
def on_train_begin( self , logs = {}):
self .losses = []
def on_batch_end( self , batch, logs = {}):
self .losses.append(logs.get( 'loss' ))
# def on_epoch_end(self, epoch, logs=None):
word_input = Input (shape = (max_len,), dtype = 'int32' , name = 'word_input' )
word_emb = Embedding( len (char_value_dict) + 2 , output_dim = 64 , input_length = max_len, dropout = 0.2 , name = 'word_emb' )(word_input)
bilstm = Bidirectional(LSTM( 32 , dropout_W = 0.1 , dropout_U = 0.1 , return_sequences = True ))(word_emb)
bilstm_d = Dropout( 0.1 )(bilstm)
half_window_size = 2
paddinglayer = ZeroPadding1D(padding = half_window_size)(word_emb)
conv = Conv1D(nb_filter = 50 , filter_length = ( 2 * half_window_size + 1 ), border_mode = 'valid' )(paddinglayer)
conv_d = Dropout( 0.1 )(conv)
dense_conv = TimeDistributed(Dense( 50 ))(conv_d)
rnn_cnn_merge = merge([bilstm_d, dense_conv], mode = 'concat' , concat_axis = 2 )
dense = TimeDistributed(Dense(class_label_count))(rnn_cnn_merge)
crf = CRF(class_label_count, sparse_target = False )
crf_output = crf(dense)
model = Model( input = [word_input], output = [crf_output])
model. compile (loss = crf.loss_function, optimizer = 'adam' , metrics = [crf.accuracy])
model.summary()
# serialize model to JSON
model_json = model.to_json()
with open ( "model.json" , "w" ) as json_file:
json_file.write(model_json)
#编译模型
# model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['acc',])
# 用于保存验证集误差最小的参数,当验证集误差减少时,立马保存下来
checkpointer = ModelCheckpoint(filepath = "bilstm_1102_k205_tf130.w" , verbose = 0 , save_best_only = True , save_weights_only = True ) #save_weights_only=True
history = LossHistory()
history = model.fit(x_train, y_train,
batch_size = 32 , epochs = 500 , #validation_data = ([x_test, seq_lens_test], y_test),
callbacks = [checkpointer, history, plotter],
verbose = 1 ,
validation_split = 0.1 ,
)
|
补充知识:keras训练模型使用自定义CTC损失函数,重载模型时报错解决办法
使用keras训练模型,用到了ctc损失函数,需要自定义损失函数如下:
self.ctc_model.compile(loss={'ctc': lambda y_true, output: output}, optimizer=opt)
其中loss为自定义函数,使用字典{‘ctc': lambda y_true, output: output}
训练完模型后需要重载模型,如下:
from keras.models import load_model
model=load_model('final_ctc_model.h5')
报错:
Unknown loss function : <lambda>
由于是自定义的损失函数需要加参数custom_objects,这里需要定义字典{'': lambda y_true, output: output},正确代码如下:
model=load_model('final_ctc_model.h5',custom_objects={'<lambda>': lambda y_true, output: output})
可能是因为要将自己定义的loss函数加入到keras函数里
在这之前试了很多次,如果用lambda y_true, output: output定义loss
函数字典名只能是'<lambda>',不能是别的字符
如果自定义一个函数如loss_func作为loss函数如:
self.ctc_model.compile(loss=loss_func, optimizer=opt)
可以在重载时使用
am=load_model('final_ctc_model.h5',custom_objects={'loss_func': loss_func})
此时注意字典名和函数名要相同
以上这篇使用keras实现BiLSTM+CNN+CRF文字标记NER就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/xinfeng2005/article/details/78485748