关于Mxnet的一些基础知识理解(1)

时间:2022-10-25 20:59:06

(1)Mxnet的数据格式为NDArray,当需要读取可观看的数据,就要调用:

numpy_d = d.asnumpy()

converts it to a Numpy array.

(2)list_arguments (给出当前符号d的输入变量)与list_outputs(给出符号d的输出变量)的说明

 
import mxnet as mxa = mx.sym.Variable("A") # represent a placeholder. These can be inputs, weights, or anything else.b = mx.sym.Variable("B")c = (a + b) / 10d = c + 1
调用list_arguments 得到的一定就是用于d计算的所有symbol
d.list_arguments()
# ['A', 'B']
调用list_outputs()得到的就是输出的名字:

d.list_outputs()
# ['_plusscalar0_output'] This is the default name from adding to scalar.,
上面在查看名称,下面教你如何查看各个层的大小

# define input shapes
inp_shapes
= {'A':(10,), 'B':(10,)}
arg_shapes
, out_shapes, aux_shapes = d.infer_shape(**inp_shapes)

arg_shapes
# the shapes of all the inputs to the graph. Order matches d.list_arguments()
# [(10, ), (10, )]

out_shapes
# the shapes of all outputs. Order matches d.list_outputs()
# [(10, )]

aux_shapes
# the shapes of auxiliary variables. These are variables that are not trainable such as batch normalization population statistics. For now, they are save to ignore.
# []

关于Grad_req的使用,符号描述完后,需要bind,得到一个executor

在使用bing进行绑定,且不需要做反向递归时:

input_arguments = {}
input_arguments
['A'] = mx.nd.ones((10, ), ctx=mx.cpu())
input_arguments
['B'] = mx.nd.ones((10, ), ctx=mx.cpu())
executor
= d.bind(ctx=mx.cpu(),
args
=input_arguments, # this can be a list or a dictionary mapping names of inputs to NDArray
grad_req
='null') # don't request gradients
args :指出输入的符号以及大小,以词典类型传入

grad_req : 设置为Null,说明不需要进行gradient计算

bind完之后,还需要调用一个forward(),就可以运算整个过程。当然,还可以通过executor,对输入的

变量再次进行相关的赋值。

import numpy as np
# The executor
executor
.arg_dict
# {'A': NDArray, 'B': NDArray}

executor
.arg_dict['A'][:] = np.random.rand(10,) # Note the [:]. This sets the contents of the array instead of setting the array to a new value instead of overwriting the variable.
executor
.arg_dict['B'][:] = np.random.rand(10,)
executor
.forward()
executor
.outputs
# [NDArray]
output_value
= executor.outputs[0].asnumpy()

executor.arg_dict['A']是NDArray类型,再使用executor.arg_dict['A'][:]=赋值,表示以numpy的值覆盖NDArray类型的值,类型依旧是NDArray;如果不加[:],表示以numpy值的array类型直接覆盖。但运算的结果却仍然是以mx.nd.ones(10,)得到的.

获取输出的结果:excutor.outputs[0].asnumpy()


本章最重要的一个环节出现了:与上面的例子的区别在于,添加了一个后向传播过程。那么就需要对grad_req = 'write' ,同时调用backforwad.

# allocate space for inputs
input_arguments
= {}
input_arguments
['A'] = mx.nd.ones((10, ), ctx=mx.cpu())
input_arguments
['B'] = mx.nd.ones((10, ), ctx=mx.cpu())
# allocate space for gradients
grad_arguments
= {}
grad_arguments
['A'] = mx.nd.ones((10, ), ctx=mx.cpu())
grad_arguments
['B'] = mx.nd.ones((10, ), ctx=mx.cpu())

executor
= d.bind(ctx=mx.cpu(),
args
=input_arguments, # this can be a list or a dictionary mapping names of inputs to NDArray
args_grad
=grad_arguments, # this can be a list or a dictionary mapping names of inputs to NDArray
grad_req
='write') # instead of null, tell the executor to write gradients. This replaces the contents of grad_arguments with the gradients computed.

executor
.arg_dict['A'][:] = np.random.rand(10,)
executor
.arg_dict['B'][:] = np.random.rand(10,)

executor
.forward()
# in this particular example, the output symbol is not a scalar or loss symbol.
# Thus taking its gradient is not possible.
# What is commonly done instead is to feed in the gradient from a future computation.
# this is essentially how backpropagation works.
out_grad
= mx.nd.ones((10,), ctx=mx.cpu())
executor
.backward([out_grad]) # because the graph only has one output, only one output grad is needed.

executor
.grad_arrays
# [NDarray, NDArray]
在调用Bind时,需要提前手动为gradient分配一个空间args_grad并且传入,同时grad_req 设置为 write。

再调用executor.forward()前向运行。

再调用excutor.backward()后向运行。输出的symbol既不是一个单量,也不是loss symbol。需要手动传入梯度。

与bind 相对的是 simple_bind,他有一个好处:不需要手动分配计算的梯度空间大小。

input_shapes = {'A': (10,), 'B': (10, )}
executor
= d.simple_bind(ctx=mx.cpu(),
grad_req
='write', # instead of null, tell the executor to write gradients
**input_shapes)
executor
.arg_dict['A'][:] = np.random.rand(10,)
executor
.arg_dict['B'][:] = np.random.rand(10,)

executor
.forward()
out_grad
= mx.nd.ones((10,), ctx=mx.cpu())
executor
.backward([out_grad])

只需要为simple_bind 设定 输入的大小,它会自动推断梯度所需的空间大小。


一套清晰简单的网络流程就为你摆放在面前了:

import mxnet as mx
import numpy as np
# First, the symbol needs to be defined
data
= mx.sym.Variable("data") # input features, mxnet commonly calls this 'data'
label
= mx.sym.Variable("softmax_label")

# One can either manually specify all the inputs to ops (data, weight and bias)
w1
= mx.sym.Variable("weight1")
b1
= mx.sym.Variable("bias1")
l1
= mx.sym.FullyConnected(data=data, num_hidden=128, name="layer1", weight=w1, bias=b1)
a1
= mx.sym.Activation(data=l1, act_type="relu", name="act1")

# Or let MXNet automatically create the needed arguments to ops
l2
= mx.sym.FullyConnected(data=a1, num_hidden=10, name="layer2")

# Create some loss symbol
cost_classification
= mx.sym.SoftmaxOutput(data=l2, label=label)

# Bind an executor of a given batch size to do forward pass and get gradients
batch_size
= 128
input_shapes
= {"data": (batch_size, 28*28), "softmax_label": (batch_size, )}
executor
= cost_classification.simple_bind(ctx=mx.gpu(0),
grad_req
='write',
**input_shapes)
此时executor是训练时用

# The above executor computes gradients. When evaluating test data we don't need this.
# We want this executor to share weights with the above one, so we will use bind
# (instead of simple_bind) and use the other executor's arguments.
executor_test
= cost_classification.bind(ctx=mx.gpu(0),
grad_req
='null',
args
=executor.arg_arrays)
executor_test 是测试时用
# executor 里含有arg_dict表示每层的名称
:bias1,data,layer2_bias,layer2_weight...
#executor 里含有 arg_arrays对应每层的具体数(诀窍:带arrays的表示数值)

# initialize the weights
for r in executor.arg_arrays:
r
[:] = np.random.randn(*r.shape)*0.02

# Using skdata to get mnist data. This is for portability. Can sub in any data loading you like.
from skdata.mnist.views import OfficialVectorClassification

data
= OfficialVectorClassification()
trIdx
= data.sel_idxs[:]
teIdx
= data.val_idxs[:]
for epoch in range(10):
print "Starting epoch", epoch
np
.random.shuffle(trIdx)
#每128个样本,作为一个batchsize
for x in range(0, len(trIdx), batch_size):
# extract a batch from mnist
batchX
= data.all_vectors[trIdx[x:x+batch_size]]
batchY
= data.all_labels[trIdx[x:x+batch_size]]

# our executor was bound to 128 size. Throw out non matching batches.
if batchX.shape[0] != batch_size:
continue
# Store batch in executor 'data'
#通过executor的 arg_dict 给予“名称”,就能获取该层的数值信息,例如设置'data',也就是赋予
#输入数据信息。一定要加上[:] ,表示overwritting
executor
.arg_dict['data'][:] = batchX / 255.
# Store label's in 'softmax_label'
executor
.arg_dict['softmax_label'][:] = batchY
executor
.forward()
executor
.backward()

#进行一次forward以及一次backward之后,需要对权值进行一次更新。
#pname表示
# do weight updates in imperative
for pname, W, G in zip(cost_classification.list_arguments(), executor.arg_arrays, executor.grad_arrays):
# Don't update inputs
# MXNet makes no distinction between weights and data.
if pname in ['data', 'softmax_label']:
continue
# what ever fancy update to modify the parameters
W
[:] = W - G * .001

# Evaluation at each epoch
num_correct
= 0
num_total
= 0
for x in range(0, len(teIdx), batch_size):
batchX
= data.all_vectors[teIdx[x:x+batch_size]]
batchY
= data.all_labels[teIdx[x:x+batch_size]]
if batchX.shape[0] != batch_size:
continue
# use the test executor as we don't care about gradients
executor_test
.arg_dict['data'][:] = batchX / 255.
executor_test
.forward()
num_correct
+= sum(batchY == np.argmax(executor_test.outputs[0].asnumpy(), axis=1))
num_total
+= len(batchY)
print "Accuracy thus far", num_correct / float(num_total)