洛谷——P2626 斐波那契数列(升级版)矩阵

时间:2023-12-11 16:50:14

题目背景

大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)。

题目描述

请你求出第n个斐波那契数列的数mod(或%)2^31之后的值。并把它分解质因数。

输入输出格式

输入格式:

n

输出格式:

把第n个斐波那契数列的数分解质因数。

输入输出样例

输入样例#1: 复制
5
输出样例#1: 复制
5=5
输入样例#2: 复制
6
输出样例#2: 复制
8=2*2*2

说明

n<=48

 斐波那契+质因数分解
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
<<;
int n,answer,s;
struct Node
{
    ][];
    Node(){memset(m,,sizeof(m));}
}mb,ans;
Node operator*(Node a,Node b)
{
    Node c;
    ;i<=;i++)
     ;j<=;j++)
      ;k<=;k++)
       c.m[i][j]=(c.m[i][j]%mod+a.m[i][k]*b.m[k][j]%mod)%mod;
    return c;
}
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int main()
{
    n=read();
    ans.m[][]=ans.m[][]=;
    mb.m[][]=mb.m[][]=mb.m[][]=;
    while(n)
    {
        ) ans=ans*mb;
        mb=mb*mb;n>>=;
    }
    answer=ans.m[][];
    printf("%d=",answer);
    ;i<=answer;i++)
    {
        )
        {
            s++;answer/=i;
            ) printf("*");
            printf("%d",i);
         }
    }
    ;
}