本文实例讲述了Python基于回溯法子集树模板解决全排列问题。分享给大家供大家参考,具体如下:
问题
实现 'a', 'b', 'c', 'd' 四个元素的全排列。
分析
这个问题可以直接套用排列树模板。
不过本文使用子集树模板。分析如下:
一个解x就是n个元素的一种排列,显然,解x的长度是固定的,n。
我们这样考虑:对于解x,先排第0个元素x[0],再排第1个元素x[1],...,当来到第k-1个元素x[k-1]时,就将剩下的未排的所有元素看作元素x[k-1]的状态空间,遍历之。
至此,套用子集树模板即可。
代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
'''用子集树实现全排列'''
n = 4
a = [ 'a' , 'b' , 'c' , 'd' ]
x = [ 0 ] * n # 一个解(n元0-1数组)
X = [] # 一组解
# 冲突检测:无
def conflict(k):
global n, x, X, a
return False # 无冲突
# 用子集树模板实现全排列
def perm(k): # 到达第k个元素
global n, a, x, X
if k > = n: # 超出最尾的元素
print (x)
#X.append(x[:]) # 保存(一个解)
else :
for i in set (a) - set (x[:k]): # 遍历,剩下的未排的所有元素看作元素x[k-1]的状态空间
x[k] = i
if not conflict(k): # 剪枝
perm(k + 1 )
# 测试
perm( 0 ) # 从x[0]开始
|
效果图
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://www.cnblogs.com/hhh5460/p/6931585.html