Python 用5行代码学机器学习—线性回归

时间:2022-10-07 08:59:32

我准备使用scikit-learn给大家介绍一些模型的基础知识,今天就来讲讲线性回归模型。

Python 用5行代码学机器学习—线性回归

1. 准备

开始之前,你要确保Python和pip已经成功安装在电脑上噢,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),准备开始输入命令安装依赖。

当然,我更推荐大家用VSCode编辑器,把本文代码Copy下来,在编辑器下方的终端运行命令安装依赖模块,多舒服的一件事啊:Python 编程的最好搭档—VSCode 详细指南。

在终端输入以下命令安装我们所需要的依赖模块:

pip install scikit-learn 

2.简单的训练集

冬天快到了,深圳这几天已经准备开始入冬了。

从生活入手,外界温度对是否穿外套的影响是具有线性关系的:

Python 用5行代码学机器学习—线性回归

现在,考虑这样的一个问题:如果深圳的温度是12度,我们应不应该穿外套?

这个问题很简单,上述简单的训练集中,我们甚至不需要机器学习就能轻易地得到答案:应该。但如果训练集变得稍显复杂一些呢:

Python 用5行代码学机器学习—线性回归

你能看出其中x1, x2, x3和y之间的规律吗?

比较难,但是如果你有足够的数据(比如100个),机器学习能够迅速解决这个问题。

为了方便展示机器学习的威力,我们在这里生产100个这样的训练集(公式为: y=x1 + 2*x2 + 3*x3):

from random import randint 

TRAIN_SET_LIMIT = 1000 

TRAIN_SET_COUNT = 100 

 

TRAIN_INPUT = list() 

TRAIN_OUTPUT = list() 

for i in range(TRAIN_SET_COUNT): 

    a = randint(0, TRAIN_SET_LIMIT) 

    b = randint(0, TRAIN_SET_LIMIT) 

    c = randint(0, TRAIN_SET_LIMIT) 

    op = a + (2*b) + (3*c) 

    TRAIN_INPUT.append([a, b, c]) 

    TRAIN_OUTPUT.append(op) 

然后让线性回归模型使用该训练集(Training Set)进行训练(fit),然后再给定三个参数(Test Data),进行预测(predict),让它得到y值(Prediction),如下图所示。

Python 用5行代码学机器学习—线性回归

3. 训练和测试

为什么我使用sklearn?因为它真的真的很方便。像这样的训练行为,你只需要3行代码就能搞定:

from sklearn.linear_model import LinearRegression 

 

predictor = LinearRegression(n_jobs=-1) 

predictor.fit(X=TRAIN_INPUTy=TRAIN_OUTPUT

需要注意线性回归模型(LinearRegression)的参数:

n_jobs:默认为1,表示使用CPU的个数。当-1时,代表使用全部CPU

predictor.fit 即训练模型,X是我们在生成训练集时的TRAIN_INPUT,Y即TRAIN_OUTPUT.

训练完就可以立即进行测试了,调用predict函数即可:

X_TEST = [[10, 20, 30]] 

outcome = predictor.predict(X=X_TEST

coefficients = predictor.coef_ 

 

print('Outcome : {}\nCoefficients : {}'.format(outcome, coefficients)) 

这里的 coefficients 是指系数,即x1, x2, x3.

得到的结果如下:

Outcome : [ 140.] 

Coefficients : [ 1. 2. 3.] 

验证一下:10 + 20*2 + 30*3 = 140 完全正确。

如何,机器学习模型,用起来其实真的没你想象中的那么难,大部分人很可能只是卡在了安装 scikit-learn 的路上...

顺便给大家留个小练习,将下列欧式距离,使用线性回归模型进行表示。

Python 用5行代码学机器学习—线性回归

解决思路和本文的方案其实是类似的,只不过需要变通一下。