1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
# -*- coding: utf-8 -*-
from numpy import *
import math
import copy
import cPickle as pickle
class ID3DTree( object ):
def __init__( self ): # 构造方法
self .tree = {} # 生成树
self .dataSet = [] # 数据集
self .labels = [] # 标签集
# 数据导入函数
def loadDataSet( self , path, labels):
recordList = []
fp = open (path, "rb" ) # 读取文件内容
content = fp.read()
fp.close()
rowList = content.splitlines() # 按行转换为一维表
recordList = [row.split( "\t" ) for row in rowList if row.strip()] # strip()函数删除空格、Tab等
self .dataSet = recordList
self .labels = labels
# 执行决策树函数
def train( self ):
labels = copy.deepcopy( self .labels)
self .tree = self .buildTree( self .dataSet, labels)
# 构件决策树:穿件决策树主程序
def buildTree( self , dataSet, lables):
cateList = [data[ - 1 ] for data in dataSet] # 抽取源数据集中的决策标签列
# 程序终止条件1:如果classList只有一种决策标签,停止划分,返回这个决策标签
if cateList.count(cateList[ 0 ]) = = len (cateList):
return cateList[ 0 ]
# 程序终止条件2:如果数据集的第一个决策标签只有一个,返回这个标签
if len (dataSet[ 0 ]) = = 1 :
return self .maxCate(cateList)
# 核心部分
bestFeat = self .getBestFeat(dataSet) # 返回数据集的最优特征轴
bestFeatLabel = lables[bestFeat]
tree = {bestFeatLabel: {}}
del (lables[bestFeat])
# 抽取最优特征轴的列向量
uniqueVals = set ([data[bestFeat] for data in dataSet]) # 去重
for value in uniqueVals: # 决策树递归生长
subLables = lables[:] # 将删除后的特征类别集建立子类别集
# 按最优特征列和值分隔数据集
splitDataset = self .splitDataSet(dataSet, bestFeat, value)
subTree = self .buildTree(splitDataset, subLables) # 构建子树
tree[bestFeatLabel][value] = subTree
return tree
# 计算出现次数最多的类别标签
def maxCate( self , cateList):
items = dict ([(cateList.count(i), i) for i in cateList])
return items[ max (items.keys())]
# 计算最优特征
def getBestFeat( self , dataSet):
# 计算特征向量维,其中最后一列用于类别标签
numFeatures = len (dataSet[ 0 ]) - 1 # 特征向量维数=行向量维数-1
baseEntropy = self .computeEntropy(dataSet) # 基础熵
bestInfoGain = 0.0 # 初始化最优的信息增益
bestFeature = - 1 # 初始化最优的特征轴
# 外循环:遍历数据集各列,计算最优特征轴
# i为数据集列索引:取值范围0~(numFeatures-1)
for i in xrange (numFeatures):
uniqueVals = set ([data[i] for data in dataSet]) # 去重
newEntropy = 0.0
for value in uniqueVals:
subDataSet = self .splitDataSet(dataSet, i, value)
prob = len (subDataSet) / float ( len (dataSet))
newEntropy + = prob * self .computeEntropy(subDataSet)
infoGain = baseEntropy - newEntropy
if (infoGain > bestInfoGain): # 信息增益大于0
bestInfoGain = infoGain # 用当前信息增益值替代之前的最优增益值
bestFeature = i # 重置最优特征为当前列
return bestFeature
# 计算信息熵
# @staticmethod
def computeEntropy( self , dataSet):
dataLen = float ( len (dataSet))
cateList = [data[ - 1 ] for data in dataSet] # 从数据集中得到类别标签
# 得到类别为key、 出现次数value的字典
items = dict ([(i, cateList.count(i)) for i in cateList])
infoEntropy = 0.0
for key in items: # 香农熵: = -p*log2(p) --infoEntropy = -prob * log(prob, 2)
prob = float (items[key]) / dataLen
infoEntropy - = prob * math.log(prob, 2 )
return infoEntropy
# 划分数据集: 分割数据集; 删除特征轴所在的数据列,返回剩余的数据集
# dataSet : 数据集; axis: 特征轴; value: 特征轴的取值
def splitDataSet( self , dataSet, axis, value):
rtnList = []
for featVec in dataSet:
if featVec[axis] = = value:
rFeatVec = featVec[:axis] # list操作:提取0~(axis-1)的元素
rFeatVec.extend(featVec[axis + 1 :])
rtnList.append(rFeatVec)
return rtnList
# 存取树到文件
def storetree( self , inputTree, filename):
fw = open (filename, 'w' )
pickle.dump(inputTree, fw)
fw.close()
# 从文件抓取树
def grabTree( self , filename):
fr = open (filename)
return pickle.load(fr)
|
调用代码
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# -*- coding: utf-8 -*-
from numpy import *
from ID3DTree import *
dtree = ID3DTree()
# ["age", "revenue", "student", "credit"]对应年龄、收入、学生、信誉4个特征
dtree.loadDataSet( "dataset.dat" , [ "age" , "revenue" , "student" , "credit" ])
dtree.train()
dtree.storetree(dtree.tree, "data.tree" )
mytree = dtree.grabTree( "data.tree" )
print mytree
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/yjIvan/article/details/71194383