Python实现的堆排序算法原理与用法实例分析

时间:2022-12-08 15:28:15

本文实例讲述了Python实现的堆排序算法。分享给大家供大家参考,具体如下:

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

具体代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#-*- coding: UTF-8 -*-
import numpy as np
def MakeHeap(a):
  for i in xrange(a.size / 2 - 1, -1, -1):#对非叶子节点的子节点进行调节,构建堆
    AdjustHeap(a, i, a.size)
def AdjustHeap(a, i, n):
  j = i*2 +1                     #选择节点i的左子节点
  x = a[i]                       #选择节点的数值
  while j < n:                    #循环对子节点及其子树进行调整
    if j + 1 < n and a[j+1] < a[j]:    #找到节点i子节点的最小值
      j += 1
    if a[j] >= x :                  #若两个子节点均不小于该节点,则不同调整
      break
    a[i], a[j] = a[j], a[i]             #将节点i的数值与其子节点中最小者的数值进行对调
    i = j                        #将i赋为改变的子节点的索引
    j = i*2 + 1                   #将j赋为节点对应的左子节点
def HeapSort(a):
  MakeHeap(a)                 #构建小顶堆
  for i in xrange(a.size - 1,0, -1):   #对堆中的元素逆向遍历
    a[i], a[0] = a[0], a[i]           #将堆顶元素与堆中最后一个元素进行对调,因为小顶堆中堆顶元素永远最小,因此,输出即为最小元素
    AdjustHeap(a, 0, i)          #重新调整使剩下的元素仍为一个堆
if __name__ == '__main__':
  a = np.random.randint(0, 10, size = 10)
  print "Before sorting..."
  print "---------------------------------------------------------------"
  print a
  print "---------------------------------------------------------------"
  HeapSort(a)
  print "After sorting..."
  print "---------------------------------------------------------------"
  print a[::-1]                    #因为堆排序按大到小进行排列,采用a[::-1]对其按从小到大进行输出
  print "---------------------------------------------------------------"

运行结果:

Python实现的堆排序算法原理与用法实例分析

希望本文所述对大家Python程序设计有所帮助。

原文链接:http://www.cnblogs.com/biaoyu/p/4831640.html