前面一篇展示了一个简单工厂模式,这一篇主要是对比,工厂方法模式比简单工厂模式好在哪里?为什么要用这个模式?这个模式的精髓在哪里?
就以计算器为例,结果图如下:
加减乘除运算都是继承自基类运算类,然后工厂类来调用这些运算,创建相应的对象,从而进行操作,oc代码如下:
基类:
#import <Foundation/Foundation.h>
@interface ZYCount : NSObject
@property (nonatomic, assign) double numberA;
@property (nonatomic, assign) double numberB;
- (instancetype)initWithNumberA:(double)numberA numberB:(double)numberB;
/**
* 由于不知道子类的具体运算,所以,这个方法交给子类去实现即可(又由于此方法,所有子类都会有此一次运算,而不是某个子类所特有的,所以放到基类里最合适)
*
*/
- (double)resultForCount;
@end
#import "ZYCount.h"
@interface ZYCount ()
@end
@implementation ZYCount
- (instancetype)initWithNumberA:(double)numberA numberB:(double)numberB
{
if (self = [super init]) {
_numberA = numberA;
_numberB = numberB;
}
return self;
}
@end
加法类:
#import "ZYCount.h"
@interface ZYCountAdd : ZYCount
@end
#import "ZYCountAdd.h"
@implementation ZYCountAdd
- (double)resultForCount
{
return self.numberA + self.numberB;
}
@end
减法类:
#import "ZYCount.h"
@interface ZYCountSubtractor : ZYCount
@end
#import "ZYCountSubtractor.h"
@implementation ZYCountSubtractor
- (double)resultForCount
{
return self.numberA - self.numberB;
}
@end
乘法类:
#import "ZYCount.h"
@interface ZYCountMuli : ZYCount
@end
#import "ZYCountMuli.h"
@implementation ZYCountMuli
- (double)resultForCount
{
return self.numberA * self.numberB;
}
@end
除法类:
#import "ZYCount.h"
@interface ZYCountDivision : ZYCount
@end
#import "ZYCountDivision.h"
@implementation ZYCountDivision
- (double)resultForCount
{
if (self.numberB == 0) {
NSLog(@"除数为0,产出错误");
return 0;
}
return self.numberA / self.numberB;
}
@end
工具类:
#import <Foundation/Foundation.h>
@class ZYCount;
@interface ZYCountTool : NSObject
+ (ZYCount *)creatCountForOperation:(NSString *)operationStr;
@end
#import "ZYCountTool.h"
#import "ZYCountAdd.h"
#import "ZYCountSubtractor.h"
#import "ZYCountMuli.h"
#import "ZYCountDivision.h"
@implementation ZYCountTool
+ (ZYCount *)creatCountForOperation:(NSString *)operationStr
{
if ([operationStr isEqualToString:@"+"]) {
return [[ZYCountAdd alloc] init];
}
else if ([operationStr isEqualToString:@"-"]) {
return [[ZYCountSubtractor alloc] init];
}
else if ([operationStr isEqualToString:@"*"]) {
return [[ZYCountMuli alloc] init];
}
return [[ZYCountDivision alloc] init];
}
@end
viewController里面的代码:
#import "ViewController.h"
#import "ZYCountAdd.h"
#import "ZYCountSubtractor.h"
#import "ZYCountMuli.h"
#import "ZYCountDivision.h"
#import "ZYCountTool.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading the view, typically from a nib.
ZYCountAdd *p = (ZYCountAdd *)[ZYCountTool creatCountForOperation:@"+"];
p.numberA = 10;
p.numberB = 20;
NSLog(@"%lf",[p resultForCount]);
}
@end
从这样的结构来看,可以知道,当我想要增加需求,比如说,其m的n次方的时候,需要增加一个运算类的子类,然后还需要更改工具类里面的代码,使得其支持这样新的运算对象的生成。这样,不仅扩展是开放的,修改也开放了,违背了,“开放-封闭原则”。
而采用工厂方法模式,可以解决这个问题。除了viewController里面代码和工厂类的代码需要改动,运算类的代码是一样的
改动代码如下:
#import <Foundation/Foundation.h>
@class ZYCount;
@interface ZYCountTool : NSObject
+ (ZYCount *)createOperation;
@end
#import "ZYCountTool.h"
@implementation ZYCountTool
@end
#import "ZYCountTool.h"
@interface ZYAddTool : ZYCountTool
@end
#import "ZYAddTool.h"
#import "ZYCountAdd.h"
@implementation ZYAddTool
+ (ZYCount *)createOperation
{
return [[ZYCountAdd alloc] init];
}
@end
#import "ZYCountTool.h"
@interface ZYSubtractorTool : ZYCountTool
@end
#import "ZYSubtractorTool.h"
#import "ZYCountSubtractor.h"
@implementation ZYSubtractorTool
+ (ZYCount *)createOperation
{
return [[ZYCountSubtractor alloc] init];
}
@end
#import "ZYCountTool.h"
@interface ZYMuliTool : ZYCountTool
@end
#import "ZYMuliTool.h"
#import "ZYCountMuli.h"
@implementation ZYMuliTool
+ (ZYCount *)createOperation
{
return [[ZYCountMuli alloc] init];
}
@end
#import "ZYCountTool.h"
@interface ZYDivisionTool : ZYCountTool
@end
#import "ZYDivisionTool.h"
#import "ZYCountDivision.h"
@implementation ZYDivisionTool
+ (ZYCount *)createOperation
{
return [[ZYCountDivision alloc] init];
}
@end
viewController里面的代码:
#import "ViewController.h"
#import "ZYCountAdd.h"
#import "ZYCountSubtractor.h"
#import "ZYCountMuli.h"
#import "ZYCountDivision.h"
#import "ZYCountTool.h"
#import "ZYAddTool.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
ZYCountAdd *p = (ZYCountAdd *)[ZYAddTool createOperation];
p.numberA = 10;
p.numberB = 20;
NSLog(@"%lf",[p resultForCount]);
}
@end
以这样的模式来设计运算操作的代码,可以清楚的得知,当需要增加一个m的n次方的运算时,只需要继承运算类增加一个子类,继承工具类增加一个子类,就可以轻松实现了,从而避免的简单工厂里面那种要去修改工具类的方法,也就符合了开放-封闭原则(ocp)。
仔细观察就会发现,工厂方法模式实现时,客户端需要决定实例化哪一个工厂来实现运算类,选择判断的问题还是存在的,也就是说,工厂方法把简单工厂的内部逻辑判断转移到了viewController里面来进行,你想要增加功能,本来是修改工厂类的,而现在时修改viewController。
那么还是要修改viewController?尽管换成其他运算类,还是要修改,但是只需修改一处就可以了,比简单工厂方法好很多了。
工厂方法模式客服了简单工厂模式中违背开放-封闭原则的缺点,又保持了封装对象创建过程的优点。工厂方法是简单工厂模式的进一步抽象和推广,由于使用多态性,工厂模式保持了简单工厂模式的优点,而客服了它的缺点。但缺点就是每增加一个产品,就需要增加一个产品工厂类,增加了额外的开发量。(解决方案,后续有...)